
Mapping Unstructured Grid Computations
to Massively Parallel Computers

Steven Warren Hammond

This work has been supported in part by an IBM doctoral fellowship,

by DARPA via Cooperative Agreement NCC 2-387 between NASA, and

by the University Space Research Association (USRA).

MAPPING UNSTRUCTURED GRID COMPUTATIONS

TO MASSIVELY PARALLEL COMPUTERS

By

Steven Warren Hammond

Thesis Submitted to the Graduate Faculty

of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Computer Science

The original of the complete thesis is on file

in the Rensselaer Polytechnic Institute Library

Approved by the

Examining Committee:

Robert S. Schreiber, Co-Chairman

Joseph E. Flaherty, Co-Chairman

W. Randolph Franklin, Member

Mark S. Shephard, Member

Boleslaw Szymanski, Member

Rensselaer Polytechnic Institute

Troy, New York

February 1992

(For Graduation August 1992)

(_)Copyright 1992

by

StevenWarren Hammond

All Rights Reserved

ii

CONTENTS

LIST OF TABLES v

LIST OF FIGURES vii

ACKNOWLEDGEMENT xiii

ABSTRACT xv

1. INTRODUCTION 1

1.1 Thesis Outline 2

1.2 Graph Theory 4

1.3 Architecture of the Connection Machine 9

1.3.1 Regular Communications 11

1.3.2 Irregular Communications - Communication Compiler 12

1.4 Contributions of this Thesis 13

2. THE MAPPING PROBLEM 15

2.1 Problem Statement 15

2.2 Complexity 17

2.3 Taxonomy of Heuristics 17

2.4 Objective Functions 19

2.5 Prior Work 21

2.5.1 Graph Partitioning 22

2.5.2 Graph Embedding 26

2.5.3 Ercal's Example 27

2.5.4 Mapping Problem 29

2.6 Summary of Prior Work 37

3. THE HEURISTIC 39

3.1 Description of CPE 39

3.2 Complexity of CPE 42

3.3 Description of Test Cases 42

3.4 Calibration of Message Cycles and Communication Time 43

111

3.5 Verification of Objective Function 47

3.6 Initial Mappings - Definition and Comparison 48

3.6.1 Comparison of Initial Mappings 50

3.7 Comparison of Local, Distance 2 and Global Searches 60

3.8 Comparison with Simulated Annealing 66

3.9 Interconnection Comparison 70

3.10 Summary 76

4. Massively Parallel Euler Solver for 2-D Unstructured Grids 77

4.1 Mathematical Background and Algorithm Description 77

4.2 Edge Direction and Data Storage 82

4.3 Fast Communication 87

4.4 Timing and Results 89

5. Sparse Matrix-Vector Products 93

5.1 Scan-based Sparse Matrix-Vector Multiplication 94

5.2 Column-wise Sparse Matrix-Vector Multiplication 98

5.3 Row-wise Sparse Matrix-Vector Multiplication 99

5.4 Comparison of Three Methods 100

6. Conclusions 105

6.1 Future Work 106

BIBLIOGRAPHY 109

APPENDICES 119

A. TEST GRIDS 119

iv

LIST OF TABLES

Table 3.1

Table 3.2

Table 3.3

Table 3.4

Table 3.5

Table 3.6

Table 3.7

Table 4.1

Table 4.2

Table 5.1

Table 5.2

Table 5.3

Table 5.4

Table A.1

Description of Test Cases 43

Comparison of Aa versus Aoo for predicting number of message

cycles, naive initial mapping 47

Number of Message Cycles as a function of beginning tem-

perature and number of iterations using SA on the 3elt test

case 67

Number of Message Cycles as a function of beginning tem-

perature and number of iterations using SA on the 4elt test

case 68

Number of Message Cycles as a function of beginning temper-

ature and number of iterations using SA on the motor test

case 69

Comparison of SA and CPE on 3 test cases: best mappings

and time in seconds for mapping 69

The value of O for the bracket test case mapped to varying

size hypercubes 75

Time in seconds for 400 iterations of kernel in unstructured

Euler code 88

Mflops and Time in seconds for unstructured Euler code on

three systems 90

Comparison of 64-bit sparse matrix-vector multiplication

schemes for 3elt task graph, time in seconds 101

Comparison of 64-bit sparse matrix-vector multiplication

schemes for motor task graph, time in seconds 102

Comparison of 64-bit sparse matrix-vector multiplication

schemes for 4elt task graph, time in seconds 102

Comparison of time in seconds for 64-bit CMSSL sparse ma-

trix routines called from CM Fortran and the row-wise scheme

using CPE on three test cases 104

Histogram of vertex degrees for 3elt 120

V

Table A.2

Table A.3

Table A.4

Table A.5

Table A.6

Table A.7

Table A.8

Histogram of vertex degrees for 4elt 123

Histogram of vertex degrees for bump 126

Histogram of vertex degrees for 4elt-2 129

Histogram of vertex degrees for Permanent Magnet Motor,

test case Motor 130

Histogram of vertex degrees for bracket 133

Histogram of vertex degrees for helicopter blade, test case rotor. 134

Histogram of vertex degrees for 3D unstructured tetrahedral

mesh about Lockheed S-3A Viking aircraft 136

vi

LIST OF FIGURES

Figure 1.1

Figure 1.2

Figure 1.3

Figure 1.4

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

A graph G with 11 vertices 5

Adjacency matrix and Laplacian matrix of graph G 6

Four coloring a 4-cube 7

A 3-way partition of G and the associated quotient graph. . . 8

Outline of Heuristic Algorithms 18

Recursive Spectral Bipartition (RSB) Algorithm 23

A Typical Genetic Algorithm 25

Possible 4-way graph partitions, processor mappings, and quo-

tient graphs of a 40 x 20 grid 28

A network flow graph constructed from a task graph with two
vertices 3O

The CPE Algorithm 40

A 4-cube with edges of E_ highlighted, splitting the 4-cube

into two 3-cubes 41

Calibration of Message Cycles and time in msec for the one-

to-many operations on 3elt test case on 8K CM-2 45

Calibration of Message Cycles and time in msec for the one-

to-many operations on 4elt test case on 8K CM-2 46

Calibration of Message Cycles and time in msec for the one-

to-many operations on bracket test case on 8K CM-2 46

Reduction of ,g, and message cycles versus sweeps after naive

and gray code initial mappings on 3elt task graph 51

Reduction of/_ and message cycles versus sweeps with 3 ran-

dom initial mappings on 3elt task graph 52

Reduction in A and message cycles versus sweeps using naive

and gray code initial mappings on 4elt task graph 53

vii

Figure 3.9

Figure 3.10

Figure 3.11

Figure 3.12

Figure 3.13

Figure 3.14

Figure 3.15

Figure 3.16

Figure 3.17

Figure 3.18

Figure 3.19

Figure 3.20

Figure 3.21

Figure 3.22

Figure 3.23

Figure 3.24

Figure 3.25

Figure 3.26

Reduction in A and messagecyclesversussweepsusing3 ran-
dom initial mappingsfor 4elt task graph............. 54

Reduction of ,_ and messagecyclesversussweepsafter naive
and gray codeinitial mappingson motor task graph...... 55

Reduction of 5, and messagecyclesversussweepswith 3 ran-
dom initial mappingson motor task graph............ 56

Reduction of ,_ versus sweeps for 3elt test case 58

Reduction of ,_ versus sweeps for 4elt test case 58

Reduction of ,_ versus sweeps for 4elt-2 test case 59

Reduction of A versus sweeps for bump test case 59

Reduction of ,_ versus sweeps for motor test case 60

Reduction of ,_ versus sweeps for bracket test case 61

Reduction of ,_ versus sweeps for rotor test case 62

Reduction of A versus sweeps for viking test case 63

Reduction of ,_ versus sweeps for three search distances on

3elt test case 64

Reduction of A versus sweeps for three search distances on

4elt test case 65

Reduction of A versus sweeps for two search distances on

bracket test case 65

Comparison of communication capabilities for 5 interconnec-

tion schemes using the bracket test case mapped to 256 pro-

cessors 72

Comparison of communication capabilities for 5 interconnec-

tion schemes using the bracket test case mapped to 512 pro-

cessors 72

Comparison of communication capabilities for 5 interconnec-

tion schemes using the bracket test case mapped to 1024 pro-

cessors 73

Comparison of communication capabilities for 5 interconnec-

tion schemes using the viking test case mapped to 256 processors. 73

.°o

Vln

Figure 3.27

Figure 3.28

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 5.1

Figure A.1

Figure A.2

Figure A.3

Figure A.4

Figure A.5

Figure A.6

Figure A.7

Figure A.8

Figure A.9

Figure A.10

Comparison of communication capabilities for 5 interconnec-

tion schemes using the viking test case mapped to 512 processors. 74

Comparison of communication capabilities for 5 interconnec-

tion schemes using the viking test case mapped to 1024 pro-

cessors 74

A small triangular mesh and one control volume 78

Centroid dual constructed by connecting adjacent triangle

centroids 79

Storage of edge data and vertex data 83

Control volume and directed edges on a small triangular mesh. 84

Example of inclusive add-scan and copy-scan operations, un-

segmented and segmented versions 95

Test case 3elt: Unstructured mesh about 3 component airfoil

with flaps down 119

Test case 3elt: Closeup of unstructured mesh about 3 compo-

nent airfoil with flaps down 120

Test case 4elt: Mesh about 4 component airfoil with extended

flaps 121

Test case 4elt: Closeup of mesh about 4 component airfoil

with extended flaps 122

Test case bump: Unstructured mesh over a bump 124

Test case bump: Closeup of unstructured mesh over a bump.. 125

Test case 4elt-2: Unstructured mesh about 4 component airfoil

with flaps down 127

Test case 4elt-2: Closeup of unstructured mesh about 4 com-

ponent airfoil with flaps down 128

Test case bracket: Tetrahedral mesh of a bracket, view a., only
surface elements shown 131

Test case bracket: Tetrahedral mesh of a bracket, view b.,

only surface elements shown 132

ix

Figure A.11 Test case viking: closeup of 3D unstructured tetrahedral mesh

about Lockheed S-3A Viking aircraft, only surface elements

shown 135

X

To Lisa

xi

xii

ACKNOWLEDGEMENT

First of all I want to thank my advisor, Rob Schreiber, for his support and encour-

agement during the last three years. His enthusiasm, knowledge, and high standards

are an inspiration. Even when he had more than enough of his own work to do, he

always made time to work with me on my thesis. Rob, thanks for your patience,

guidance, and above all, for being a friend.

I would also like to thank Joe Flaherty, W. Randolph Flanklin, Mark Shephard,

and Bolek Szymanski for serving on my committee.

I am deeply indebted to Tim Barth. Our collaboration on the parallel un-

structured Euler code provided much of the motivation for this research. Also, our

food logs, pints at the Tied House, Giants' games, and BBQ's provided necessary

diversions.

I want to thank Marsha Berger, Rupak Biswas, and Noel Nachtigal for reading

drafts of this thesis. They suggested many improvements and clarifications that

contributed greatly to this thesis. Additionally, Rupak printed the final version of

this and turned in while I was in France.

I want to thank Kyra Lowther for providing ample amounts of "hand-holding"

as I learned the Symbolics, lisp, *lisp, and the CM-2 all at once. Also, while our

programs ran, we swapped a recipe or two. Denny Dahl provided me with alpha

releases of the communication compiler software and invaluable insight into the way

messages are delivered on the CM-2.

I thank my cycling friends Eugene Cordero, Roland Freund, Roger Strawn,

and Leigh Ann Tanner for giving me an opportunity to work out frustrations on

two wheels.

This work has been supported in part by an IBM doctoral fellowship, by

PRECEDING PAGE BLArJK NOT FILMED xiii
| !

DARPA via Cooperative Agreement NCC 2-387 between NASA, and by the Uni-

versity Space Research Association (USRA). Finally, I thank the NAS project at

NASA Ames Research Center for providing me with (much more than my share of)

time and disk space on the CM-2.

xiv

ABSTRACT

This thesisinvestigatesthe mappingproblem: assignthe tasksof a parallel program

to the processorsof a parallel computer suchthat the execution time is minimized.

First, a taxonomy of objective functions and heuristics usedto solvethe map-

ping problem is presented. Next, we develop a highly parallel heuristic mapping

algorithm, called Cyclic Pairwise Exchange (CPE), and discuss its place in the tax-

onomy. CPE uses local pairwise exchanges of processor assignments to iteratively

improve an initial mapping. A variety of initial mapping schemes are tested and

recursive spectral bipartitioning (RSB) followed by CPE is shown to result in the

best mappings. For the test cases studied here, problems arising in computational

fluid dynamics and structural mechanics on unstructured triangular and tetrahedral

meshes, RSB and CPE outperform methods based on simulated annealing. Much

less time is required to do the mapping and the results obtained are better. Com-

pared with random and naive mappings, RSB and CPE reduce the communication

time twofold for the test problems used.

Finally, we use CPE in two applications on a CM-2. The first application

is a data parallel mesh-vertex upwind finite volume scheme for solving the Euler

equations on 2-D triangular unstructured meshes. CPE is used to map grid points

to processors. The performance of this code is compared with a similar code on a

Cray-YMP and an Intel iPSC/860. The second application is parallel sparse matrix-

vector multiplication used in the iterative solution of large sparse linear systems of

equations. We map rows of the matrix to processors and use an inner-product

based matrix-vector multiplication. We demonstrate that this method is an order

of magnitude faster than methods based on scan operations for our test cases.

XV

xvi

CHAPTER 1

INTRODUCTION

In massively parallel computer systems, tens of thousands of processors are inter-

connected into single units. These systems promise high peak performance. For ex-

ample, the Connection Machine [37] CM-2 has 64K bit-serial processors and a peak

rate of 13.7 Gfiops (1.71 Gfiops on 8K processors) in 64-bit arithmetic. However, an

imprudent assignment of tasks to processors can cause unnecessary interprocessor

communication. The communication time - the amount of time spent moving data

between processors - can dominate the computation time and thus limit the realized

performance.

Many projects have demonstrated that massively parallel architectures are

effective at solving discretized Partial Differential Equations (PDEs) when the dis-

cretizing grids are fixed and topologically simple, Cartesian for example [2, 9, 15, 24,

40, 49, 51, 53, 54, 77]. Parallel numerical techniques used to solve PDEs decompose

the computation into concurrent tasks that are associated with the grid points of

the discretizing grid, one task per grid point. A task is a set of local data, computa-

tions, and communications (input and output data). The tasks repeatedly perform

computations on local data and then exchange locally stored or computed data

with other tasks. These steps are repeated until some desired solution is achieved

- perhaps thousands or tens of thousands of times (for large computations). The

tasks associated with Cartesian grids can be optimally mapped to parallel computers

whose interconnection is a grid or torus since the topologies are identical. Multi-

dimensional gray codes can be used when mapping tasks associated with Cartesian

grids to hypercubes.

Here we study the use of parallel architectures for more difficult problems,

where the discretizing grid is arbitrary, but static. This thesis investigates mapping

PP,ECEDiSiG PA_E BLANK NOr FILMED fj_ tI_IIlIL_LL _LA_',_

the tasks associated with the solution of unstructured grid problems to the processors

of a parallel computer such that the execution time is minimized. Optimal graph

mapping is NP-complete [13]. We can, however, use heuristics.

1.1 Thesis Outline

This thesis is organized as follows. In the remainder of the Introduction, we de-

fine terminology and notation from graph theory that is used throughout the thesis.

Next, we discuss the architecture and operation of the Connection Machine CM-2.

It is used to experimentally validate CPE. Finally, we present the contributions of

this thesis.

The remaining chapters are as follows. In Chapter 2 we give a formal definition

of the mapping problem. Also, we present a taxonomy of objective functions and

heuristic algorithms used to solve the mapping problem and discuss related and

prior work.

In Chapter 3 we develop the CPE heuristic, a highly parallel iterative map-

ping algorithm. CPE starts with some initial assignment of tasks to processors. To

improve an initial mapping, CPE uses an iterative parallel pairwise exchange algo-

rithm in which pairs of neighboring processors may exchange the tasks mapped to

them. Several different initial mappings are tested. We describe the implementation

of CPE on the CM-2 and verify its capabilities with a variety of test cases. For very

large, very irregular problems arising in 2-D flow around complex multi-component

airfoils and 3-D flow around aircraft, it has achieved excellent results. The method

has outperformed parallel methods based on simulated annealing (SA). Compared

to SA, CPE requires up to a factor of six less time to do the mapping and the

results obtained are better. By this we mean that, for our test cases, an application

requires less execution time when using a mapping produced by CPE than when

using a mapping produced by SA. Compared with random and naive mappings,

CPE reduces the execution time twofold for realistic, large, highly irregular, and

stretched meshes.

In Chapters 4 and 5 we incorporate CPE into two applications. In Chapter

4 we develop a data parallel implementation of Barth and Jespersen's mesh-vertex

upwind finite volume scheme for solving the Euler equations on triangular unstruc-

tured meshes [5]. We show that directing the edges of the mesh and using this

information to assign vertex and edge data to tasks reduces the amount of commu-

nication by half. Also, CPE is used to assign tasks associated with grid points to

processors to reduce the communication time. We show that using CPE to map

tasks to processors reduces the communication time by a factor of 2.23. The result

is a load-bManced compute-bound parallel implementation of the Euler code. The

performance of this code running on the CM-2 is compared with a similar code run-

ning on a Cray-YMP and an Intel iPSC/860. For our test case, we demonstrate that

the code on the CM-2 achieves 90% of the performance of the code on 1 processor

of a YMP.

In Chapter 5 we compare three methods for computing massively parallel

sparse matrix-vector multiplication y = Ax. The three methods are: scan-based,

column-wise, and row-wise. The scan-based technique stores one nonzero element of

A in each processor and uses scan operations to sum locally computed products. The

column-wise scheme stores the nonzero elements of a column of A in each processor

and computes the sum of the scaled columns. The row-wise method stores nonzero

elements of the rows of A in each processor and computes a sparse inner product.

For the last two methods, we associate a task with each column and row of the

matrix, respectively. We use CPE to map tasks to processors and show that the

communication time is reduced by approximately a factor of two for our test cases.

We demonstrate that, on the CM-2, row-wise sparse matrix-vector multiplication

mapped with CPE is an order-of-magnitude faster than scan-based operations for

our test cases.

Chapter 6 contains a summary of and future directions for this research.

1.2 Graph Theory

Following Bondy and Murty [14] and Hartsfield and Ringel [35] we use the

following terminology and notation. A graph G is a pair of sets (V, E) where V is

nonempty, and E is a (possibly empty) set of unordered pairs of elements of V. The

elements of V are called the vertices of G and the elements of E are called the edges

of G. We write Vc for the vertices of G and Ec for the edges of G. We use the

symbols uc and ea to denote the number of vertices and edges in G. If there is only

one graph being considered, we omit the letter G from the symbols and write, for

instance, V, E, u and _, instead of Va, Ea, ua and ca.

Two graphs G and H are said to be isomorphic if there is a bijection _ : Va ---*

VH such that (u,v) E Ea if and only if (8(u),6(v)) E EH. Also, a graph H is a

subgraph of G if VH C_ Va and EH C_ Ea.

If u and v are vertices of G, we say that u and v are adjacent or neighbors if

(u,v / E E. Two edges incident to a common vertex are said to be adjacent. An

edge (v, v) C E is called a loop.

A walk in G is a finite non-null sequence W -- vo, el,vl,e2, v2, ..., ek, vk,

whose terms are alternately vertices and edges, such that, for 1 < i < k, the ends

of ei are V__l and vi. If the edges el,e2, ..., ek and vertices Vo, Vl,V2, ..., Vk of

a walk W are distinct, W is called a path. The integer k is the path-length of the

path. For a graph G, if there is a path from u to v for every u and v in V, then G

is said to be connected.

With each {u,v) E Ea let there be associated an integer c((u,v)), called its

edge weight; and, with each v EVa let there be associated an integer w(v), called

its vertex weight. Then G, together with these edge and vertex weights, is called a

fll 5

4

2

Figure 1.1: A graph G with 11 vertices.

weighted graph. We adopt the convention that c((u, v)) = cxz if (u, v) ¢ E. If H is a

subgraph of a weighted graph, the edge weight c(H) of H is the sum of the weights

y_ c(e) of its edges. We refer to the edge weight of a path in a weighted graph
e6EH

as its length. Similarly, the minimum edge weight of a (u, v)-path will be called the

distance between u and v and denoted by d(u, v).

The degree 6a(v) of a vertex v in G is the number of edges of G incident to

v. Let A(G) denote the maximum degree of the vertices of G and 6(G) denote the

minimum degree of the vertices of G. Figure 1.1 shows a graph G where u = 10,

c=19,6=2, andA=6.

To any graph G there corresponds an adjacency matrix; this is the u x u

matrix A(G) = [a_j], where a_j is the number of edges joining vi and vj. We define

the Laplacian matrix of a graph G as L(G) = [lij], where l_j = a_j for i ¢ j and

lii = -6a(vi) for each v_ 6 V. Figure 1.2 shows the adjacency matrix and the

Laplacian matrix of the graph G from Figure 1.1.

A graph is said to be planar if it can be drawn in the plane so that its edges

intersect only at their endpoints. A planar graph G partitions the rest of the plane

A(G)=

"01 O0011001"
1010000001
0101000101
O010100111
0001010011
1000101001
1000010000
0011000010
0001100100
1111110000

L(G) =

_100011001"

1-310000001
01-41000101
001-5100111
0001410011
1000141001
100001-2000
0011000-310
00011001-30
111111000-6

Figure 1.2: Adjacency matrix and Laplacian matrix of graph G.

into a number of connected regions; the closure of these regions are called the faces

of G. We shall denote by F(G) and ¢(G), respectively, the set of faces and the

number of faces of a planar graph G. For f C F(G), let _a(f) denote the number

of edges incident to f. Finally, let Fb(G) C_ F(G) be defined by

Fb(G) = {f E F(G) l aa(f) > 3}. (1.1)

Euler's formula relates the numbers of vertices, edges, and faces of a planar con-

nected graph:

v - e + ¢ = 2. (1.2)

In Figure 1.1, G is a planar graph, ¢(G) = 11, _a(fs) = 3, 6a(fll) = 8, and

Fb(G) = {f11}. Also, using (1.2) we verify that

10-19+11 =2.

A hypercube of dimension n (or n-cube) is a graph G = (E, V) where v = 2'_

and the vertices are labeled 0 to 2"-1. There is an edge (u, v) E E if and only if the

binary representation of the labelings for u and v differ in exactly one bit position.

A k-ary n-cube is an interconnection topology with k" processors. Each processor

has an n-digit radix k address, p = p,,-1, ..., P0. Two processors are adjacent if

....i-............
".. ! _. ...° i...°"

".. , _. ...".,
..... ! _._ 0010 _.1010

0000 t I
I I

I I
I I

I I
I I

I .10110 ' 1110l l

I • • I... -...1o,oo,.oo ;........
." I ; ". "..

•. :0111 ". ,
._ :.s. • • • f-_1111

@@Q@

.." , • " "*'-. I

.." • " "-. I

01016.: : --d_'q ioi

...............colorl

color2

...... color3

....... color4

Figure 1.3: Four coloring a 4-cube.

and only if their addresses in radix k differ in precisely one digit, and the magnitude

of this difference is one. A hypercube is a k-ary n-cube with k = 2.

A k-edge-coloring of a loopless graph G is an assignment of k colors, 1,2, . .., k

to the edges of G. Let Eb be the set of edges that are assigned color i. The coloring is

properif no two adjacent edges have the same color. A proper k-edge-coloring results
k

in k pairwise disjoint subsets of Ea, such that [.J E_ = Ea. The edge chromatic
i=1

number x'(G), of a loopless graph G, is the minimum k for which G is properly

k-edge-colorable. Figure 1.3 shows a 4-cube. The vertex labels are given in binary

representation. The graph has a proper 4-edge-coloring and different line types

are used to represent the four edge colors. A systematic way of properly k-edge-

coloring a k-cube is as follows. If vertices u and v are neighbors and their binary

representations differ in the i th position, color edge (u, v) with color i. For example,

vertices 0000 and 0001 are neighbors and differ in the 1st bit position. Therefore,

color 1 is used for edge (0000, 0001).

Let G = (V, E) be a weighted graph and let p be a positive integer. A p-way

partition of V is a set T' = {V_, ..., Vp} of nonempty, pairwise disjoint subsets of V,

5 ½

6j(T /
9

VI -. V2

Figure 1.4: A 3-way partition of G and the associated quotient graph.

P

such that U v/= v. Let q > max w(v). A partition is q-admissible if _ w(v) < q
i=1 vE V vE Vi

for i = 1, ..., p. The partition-cost of a partition is the summation of c((u,v))

for every (u, v) E E such that u and v are in different subsets. The partition-cost

is thus the weighted sum of inter-subset edges. We define the quotient graph of G

with respect to 79 to be the graph QG = (79, E) where (V_, Vj) E E if and only if

(u, v) E E for some u E _ and v E Vj. Figure 1.4 shows a 3-way partition of G and

the associated quotient graph. The partitions are V_ = {1,6, 7}, V2 = {4, 5, 8, 9},

and V3 = {2,3, 10}. The quotient graph Qc = (79, E) with respect to this 3-way

partition is 79= {V_, V2, V3} and £= {(V1,½), (V_, Vj), (½, Vj)}.

Following Ho and Johnson [38], an embedding of a graph G in a graph H is a

one-to-one mapping q0 : G _ H of vertices of G to vertices of H and an assignment

of each edge e = (u, v) E EH to a path _(e) whose end points are qo(u) and qa(v).

The dilation of qo denoted A_ is

A_ = max(d(_p(u),_o(v))), for all <u,v> E Ea. (1.3)

Additionally, the load factor of an edge e' 6 Ett is

factor of _ denoted Atl is

] {e'} ("] E_(_) 1. The load
e6Ea

At.t= max{ _ [{e')NEv(_) I}. (1.4)
e'EEH e6EG

This isthe maximum number of paths 4(e) that share an edge in H.

A directed graph (digraph) D = (V, E) is a graph whose edges are ordered

pairs of vertices. With each digraph D we can associate a graph G on the same

vertex set; corresponding to each directed edge of D there is an edge of G with the

same ends. G is the underlying graph of D. For a digraph D, if u and v are vertices

such that (u, v} 6 E then u is said to be the tail of the directed edge and v is called

the head of the directed edge. The indegree @(v) of a vertex v in D is the number

of directed edges with head v; the outdegree 5+D(V) of a vertex v in D is the number

of directed edges with tail v. We denote the maximum outdegree of a digraph D by

A+(D).

We define a network N to be a weighted digraph with two distinguished subsets

of vertices, X and Y, which are are assumed to be disjoint and nonempty. The

vertices in X are the sources and those in Y are the sinks of N. The edge weight

c of each edge is a non-negative integer called the capacity. A cutset in a network

N is a set of edges which when removed disconnects the source nodes from the sink

nodes. No proper subset of a cutset is a cutset. The weight of a cutset is equal to the

sum of the capacities of the edges in the cutset. The Max-Flow Min-Cut theorem

(Ford and Fulkerson [46]) states that the value of a maximum flow in a network is

equal to the weight of a minimum cutset of that network.

1.3 Architecture of the Connection Machine

Many people have considered mapping applications to hypercube networks [72]

and other parallel processors. Hypercubes have attracted much attention because of

10

their topological properties [58, 59] and their development into products by several

manufacturers. The experiments conducted here are on a Connection Machine CM-

2, which is a hypercube.

The Connection Machine CM-2 is a massively parallel single instruction mul-

tiple data (SIMD) computer with 64K 1-bit processors a. Instructions are broadcast

to the processors from a host computer and all processors execute the same opera-

tion at the same time with their own local data. A processor can also decide not to

store the result of the broadcast instruction based on local values.

The underlying topology of the CM-2 is an 1 I-dimensional hypercube of sprint

nodes. A sprint node is composed of 32 1-bit processors (two processor chips con-

taining 16 processors each), a Weitek floating point chip and memory. Neighboring

sprint nodes are connected by two bi-directional 1-bit paths. Communication be-

tween the 32 processors on a sprint node is very inexpensive relative to communi-

cation with processors on other sprint nodes. In order to analyze communication

time, one ignores the fact that sprint nodes contain 32 processors and focuses on

reducing the cost of inter-sprint-node communication. An 8K processor CM-2 has

256 sprint nodes with 16 bi-directional connections each.

Users of the CM-2 do not have to limit the number of processes or tasks to

be less than or equal to the number of processors. A mechanism called a virtual

processor (VP) allows one physical processor to simulate the operation of multiple

processors. On the CM-2 this is done by splitting the memory of each processor into

equal pieces; each VP gets its own portion. Each physical processor then executes

the same instruction once for each VP. This is transparent to the user. The ratio of

the number of virtual processors to the number of physical processors is called the

VP ratio.

aAn assessment of the Connection Machine can be found in Schreiber [65].

11

1.3.1 Regular Communications

Communication is much slower than computation on the CM-2. On a 64K

CM-2, point-to-point nearest neighbor communication (often referred to as NEWS

communication) rates vary between 7.3 × 107 and 1.6 x l09 floating-point words

communicated per second, depending on the VP ratio. Levit [49] showed that using

the CM-2 assembly language Paris, the realizable peak computation rate is 5.17 x 109

flops (32-bit). Berryman [9] showed that using the router for collision-free, distance

1 communication is approximately eight times slower than NEWS communication.

Many people have shown that applications which can be implemented us-

ing strictly regular (nearest neighbor) communications on the Connection Machine

achieve rates close to the realizable peak rate [9, 15, 24, 49, 53, 54, 77]. On the other

hand, if an algorithm requires general communication between processors (using the

router) then there can be 3 orders of magnitude (or greater) difference between

realized and peak performance [9, 18].

Fast multiwire NEWS network communications have been developed by Brom-

ley et al. [15] and Myczkowski, Bromley, and McGowan [54]. They develop a com-

bined communication and computation primitive for use with tasks associated with

rectilinear grids where communication is conducted between grid neighbors. In a

single subroutine call, each task is able to receive a specified variable from a task

associated with each of its grid neighbors and have those values added together.

However, this work does not apply to arbitrary grids.

Although the multiwire NEWS communication is more efficient than simple

NEWS communication, the wires of the hypercube are underutilized. Work by

Edelman [22] and Johnsson and Ho [41, 42] addresses this for communications in

which each processor has a unique piece of data for every other processor. This is

called an "all-to-all personalized" broadcast; it occurs in matrix transpose and bit

reversal operations.

12

1.3.2 Irregular Communications - Communication Compiler

Until recently, general communication on the Connection Machine CM-2 re-

quired the router and was excruciatingly slow. This was particularly true for solving

unstructured grid problems where the communication pattern required by the ap-

plication does not match the topology of the CM-2. A feature of the applications

that we focus on here is that the communication pattern, although irregular, re-

mains static throughout the duration of the computation. DaM [19] has developed

the communication compiler, a software package designed to take advantage of an

arbitrary but fixed pattern of communication. Interprocessor communications are

scheduled once at the beginning of the program and this schedule is used repeat-

edly during the program execution. Moving data between sprint nodes using the

communication compiler is a factor of 5 to 10 faster than using the router for gen-

eral communication. An intelligent mapping of tasks to processors as proposed here

results in further improvements.

An important concept in compiled communication on the CM-2 is a message

cycle, a single communication step in which two 32-bit words can be moved across

each of the bi-directional paths (one in each direction) connecting sprint nodes.

In one message cycle each sprint node on an 8K CM-2 can send and receive 16

words, one for each of its 16 bi-directional connections, for a total of 4096 words

per message cycle. The output of the communication compiler is a schedule of data

being communicated across wires in time and the number of messages cycles required

for the communication to be completed. We define bandwidth to be the number of

32-bit words a computer can communicate each cycle. Therefore, the bandwidth of

an 8K CM-2 is 4096 words/cycle.

The time to send one or more 32-bit words on the CM-2 using version 6.0 of

the communication compiler [20] is given by:

timecM = (26 + 51msg_cycles + VPratio(17src + 57rcv)) #sec. (1.5)

13

The startup cost is 26 #sec. The quantity msg_cyclesis the number of message

cycles for all words to arrive at their destination; src is the maximum number of

unique 32-bit words being sent from any processor; rcv is the maximum number of

unique 32-bit words being received by any processor 2.

Throughout this thesis we make use of two communication primitives, one-

to-many and many-to-many. A one-to-many communication is when each task has

one piece of data to send to a small subset of the other tasks. A many-to-many

communication is when each task sends a unique word to each member of a small

subset of the tasks. In many applications, the subsets of the tasks with which each

task communicates are not known until run time because this is determined by data

computed at the beginning of the computation or read in as initial data. However,

the subsets often remain static for the duration of the computation.

1.4 Contributions of this Thesis

We develop the Cyclic Pairwise Exchange heuristic, a parallel iterative map-

ping algorithm. It is a highly parallel pairwise exchange algorithm in which each

processor may exchange the tasks mapped to it with a small subset of the other

processors. CPE requires only a small amount of nearest neighbor communication

and it is computationally less expensive than global search methods. The objective

function that is minimized is the sum of the distances that words must travel. We

demonstrate good correlation between the objective function and the communica-

tion time on the CM-2. We show that it is better to reduce the sum of the distances

that messages travel than the maximum distance any message has to travel.

For very large, very irregular problems arising in 2-D flow around complex

multi-component airfoils and 3-D flow around aircraft, the heuristic outperforms

methods based on simulated annealing - it requires far less time to do the mapping

2We are referring to the 1-bit processors here. Recall that there are 32 of them in each sprint
node.

14

and the results obtained are better. Compared with random and naive mappings, it

reduces the communication time twofold, even for realistic, large, highly irregular,

and stretched meshes.

We develop an efficient data parallel implementation of Barth and Jespersen's

mesh-vertex upwind finite volume scheme for solving the Euler equations on trian-

gular unstructured meshes [5]. An optimal edge direction is used to group vertex

and edge data within a task to reduce the amount of communication by 50% in this

application. Also, the edge direction produces a load balanced computation.

We compare three methods of massively parallel sparse matrix-vector multi-

plication: scan-based, column-wise, and row-wise. For the last two techniques, we

use CPE to map tasks associated with the columns and rows of the matrix to the

processors. We show that mapping with CPE reduces the communication time by

a factor of two for these two methods. Also, we demonstrate that the row-wise

method is the fastest of the three and that it achieves approximately an order of

magnitude greater throughput than the scan-based method for our test cases on the

CM-2.

Taken together, these results demonstrate that a judicious assignment of tasks

to processors enables data-parallel SIMD computers to efficiently solve problems that

arise in the solution of discretized PDEs, where the discretizing grid is arbitrary,

but static.

CHAPTER 2

THE MAPPING PROBLEM

2.1 Problem Statement

A parallel application is composed of many hundreds or thousands of relatively

independent tasks. The tasks and their communications form a weighted digraph

T = (VT, ET) called the task graph. There is a vertex v C VT for each task and

a directed edge (u,v) E ET if and only if task u sends data to task v. The task

graph edge weight CT((U, v)) is the number of words to be sent from u to v. The

vertex weight of T, WT(V) is the number of floating point operations or instructions

executed by task v.

The parallel computer is represented by a connected, weighted graph P =

(Vp, Ep) called the processor graph. There is a vertex v E Vp for each processor in

the computer. Also, for each processor u that is directly connected with processor

v there is an edge (u,v) E Ep. The processor graph edge weight cp((u, v)) is the

number of words per second that processor u can send to processor v. The processor

graph vertex weight wp(v) is the number of operations per second that processor v

can execute.

Without loss of generality we use the term task instead of task graph vertex

and processor instead of processor graph vertex.

The mapping problem consists of finding q : VT--*Vp such that we minimize

time,_,_ = time,o,,_ + tirne_omp. (2.1)

Clearly, if • maps all tasks of VT to one processor, then the communication cost

would be zero but the computation time would be high. On the other hand, if there

are roughly equal numbers of operations to be done by each task and this is greater

than the number of words to be communicated per task, then • should map an

15

16

equalnumber of tasks to eachprocessor.

We make the following assumptionsabout the edgeand vertex weights of T

and P: the tasks have equal amounts of computations (all WT are identical), there

is an equal amount of data communicated between tasks (all CT are identical), there

is much more computation than communication (ww >> CT), and the computer is

homogeneous - tasks execute equally well on each processor (all cv are identical and

all wp are identical).

These are reasonable assumptions since the application areas to which this

work applies include computational fluid dynamics, electromagnetics, and struc-

tural mechanics. The problems to be solved are nearly always initial or boundary

value problems for coupled systems of PDEs. We associate a task with each point

in the discretizing grid. The tasks have similar communication and computation

requirements and the amount of computation exceeds the communication. For ex-

ample, in the computational fluid dynamics application discussed in Chapter 4,

each task performs approximately 300 floating point operations and communicates

54 words of data for each neighboring task, each iteration of the flow solver [34].

After using CPE, 57.4% of the time is spent computing and 42.6% of the time is

spent communicating. Finally, many of the parallel computers being developed and

marketed today are networks of homogeneous processors.

Given these assumptions, we choose to approximately solve the problem of

minimizing the communication time in a load balanced mapping of tasks to proces-

sors: minimize timecomm subject to

[{t C VT : _(t) = p E Vp}] _< [Up], for all p E Vp.

We approximate timecomm with an objective function which is machine inde-

pendent,

A1 =- _ cw((u,v))d(t_(u),Ol(v)). (2.2)
(u,v)eET

17

2.2 Complexity

We follow the argument used by Bokhari [12] to show that it is unlikely that an

exact polynomial time algorithm exists for solving the mapping problem. If we had

an exact algorithm for solving the mapping problem then we could use it to solve the

graph isomorphism problem, a classic NP-complete problem. If we make the same

assumptions about the mapping problem as above and assume that UT = up, then

the mapping problem is identical to the graph isomorphism problem. If we had an

exact polynomial time algorithm for the mapping problem, we could use it to map

T to P. If the two were isomorphic we would obtain a value of A1 equal to c(T).

Thus, we could determine whether or not T and P are isomorphic in polynomial

time.

For a mapping algorithm to be practical, less time should be spent on the

mapping problem than on solving the application. Typical implicit and explicit

schemes for solving discretized PDE's have serial complexity O(n) per iteration,

where n is the number of grid points or unknowns. If we associate one task per

grid point, then exact or approximate algorithms for the mapping problem should

have complexity less than or equal to O(uT), otherwise, more time will be spent

computing a mapping than solving the PDE. On the other hand, if the grid remains

fixed and the PDE is solved for many different sets of initial values (the task graph

remains fixed), then more time can be spent on the mapping problem.

2.3 Taxonomy of Heuristics

Here we describe a taxonomy of the methods for approximately solving the

mapping problem. Also, we discuss prior work and where each fits in this taxon-

omy. Techniques for solving the mapping problem are either heuristic algorithms

(heuristics) or exact algorithms. We know that finding an exact or optimal solution

to the mapping problem is NP-complete. Thus, any method for finding an exact

18

1. initial assignment

S_ VT

while S # 0 do

Choose some S' C S, S' # 0.

Assign each t E ,5" to a processor.

S,---S\S'.

endwhile

2. iterate

do iterations = 1, maximum number of iterations

Choose some T' C_ VT, T' # O.

Tentatively reassign each t E T' to a new processor.

if (new mapping is satisfactory) then

replace mapping from prey. iteration with new mapping.

if (mapping is acceptable) then stop

enddo

Figure 2.1: Outline of Heuristic Algorithms.

solution will almost certainly require an inordinate amount of computation. Heuris-

tics attempt to find an acceptable sub-optimal solution in a reasonable amount of

time. A heuristic is a combination of three things: (1) an initial guess at the solu-

tion; (2) some improvement procedure; (3) an objective function. The improvement

procedure of many heuristics follow the algorithm outlined in Figure 2.1.

Heuristics are divided into two types: one-pass and iterative. One-pass al-

gorithms omit step 2. They incrementally assign an unassigned task or group of

tasks to processors, until each task is assigned to a processor. Once an assignment

is made, it is not changed.

Iterative techniques execute step 2 one or more times. They are either de-

terministic or probabilistic. Deterministic-iterative algorithms start with an initial

solution to the mapping problem and then at each iteration try to reduce the value

19

of an objective function by changing the assignment of tasks to processors. At each

iteration, only one better solution is kept for the next iteration. The process stops

when one of the following occurs: some acceptable mapping is achieved, the itera-

tion limit has been exceeded, or no further improvement is possible with the given

improvement procedure. Deterministic-iterative algorithms stop at the first local

minimum of the objective function. Probabilistic-iterative algorithms use random

changes to the assignment of tasks to processors. A new mapping is accepted un-

conditionally if the value of the objective function is reduced. If the new value of the

objective function is higher than the value achieved by the mapping at the previous

iteration, then the new mapping is accepted with some finite probability. As with

deterministic algorithms, only one solution is kept at each iteration.

The heuristics vary in the way that they make an initial assignment of tasks

to processors. In step 2, they differ in the number of vertex mappings changed at

each iteration and how the change is made each iteration. They also differ in the

objective function used.

2.4 Objective Functions

A good objective function for the mapping problem should have good corre-

lation with the value that it is predicting - the execution time of the application -

as well as being readily computable to be practical.

In addition to the variety of optimization procedures, there is a spectrum of

objective functions one can use in solving the mapping problem. We use subscripted

A's to denote the various objective functions defined in this section.

One objective function that has been used is Aoo (1.3). Recall that this is the

maximum distance between neighbors in the task graph under the mapping. Its

advantages are that it is easy to compute and it is a lower bound on the communi-

cation time. However, Aoo only measures the maximum distance that data travels;

2O

the total amount of communication is not measured. Experiments on the CM-2

with our test cases show that this objective function is not well correlated to the

actual communication time.

Bokhari [12] suggests using the B-cardinality of the mapping:

AB - _ cp((klJ(u), _(v))), (2.3)

with the assumption that cp(e) = 1 if e 6 Ep and cp(e) = 0 otherwise. Unlike other

objective functions discussed here, As is to be maximized. It counts the number

of neighboring task graph vertices that are mapped to neighboring vertices in the

processor graph. It only accounts for task graph edges that are mapped to length one

paths in the processor graph. However, task graph edges mapped to paths of length

greater than one can be the communication bottleneck; they are not accounted for

in this objective function.

Sadayappan et al. [61] suggest minimizing:

- Y_ / 1, ifd(Ot(u),Ot(v))>_ 1Ap (2.4)

(,,,v)eEr [0, otherwise

This is the number of adjacent vertices in the task graph that are mapped to proces-

sor graph vertices which are separated by a distance of one or greater. This objective

function is also easy to compute but does not differentiate between short and long

distance communication. Also, it does not account for the amount of communication

represented by a task graph edge.

We approximate tirneco,,,,_ of (2.1) with Aa of (2.2). The objective function

A1 is both readily computed and it is easily parallelized. Also, we find that A1 is a

good approximation to the actual communication time on the CM-2 even though it

does not explicitly account for contention on communication paths. In Section 3.5

we show that there is good correlation between Aa and communication time on the

CM-2.

21

One canalso useAtf (1.4) asan objective function to be minimized. First, a

p-way partition of the task graph is made and then the associated quotient graph

is embedded in the processor graph, minimizing the load factor. This is a better

approximation to the actual communication time than A1 but it is much more

expensive to compute since edges in the quotient graph must be assigned to paths

in the processor graph. This requires one to solve a series of maximal bipartite

matching problems to optimally schedule the communications.

Lee and Aggarwal [48] advocate using the number of message cycles (they

call it the communication overhead) as an objective function, denoted Amc. They

schedule task graph edges to paths in P and determine which edge will take the

maximum number of message cycles to complete its associated communication. Both

the length of the paths and the contention for processor graph edges are measured

by Amc. Although Amc is a very accurate measure of the communication time,

it is expensive to compute each time one considers changing the mapping since

computing an optimal schedule is itself a hard combinatorial optimization problem.

2.5 Prior Work

Graph partitioning and graph embedding are related to graph mapping. A

mapping is both a partitioning and an embedding. The subsets of VT consisting of

the tasks mapped to the same processor constitute a partition of VT. To approxi-

mately solve the mapping problem, one might consider first partitioning VT into up

disjoint subsets and then embedding the quotient graph into the processor graph (up

processors). Graph partitioning followed by embedding can be viewed as a one-pass

heuristic or as an initial mapping to be improved by an iterative heuristic.

22

2.5.1 Graph Partitioning

The graph partitioning problem is: given a weighted graph G and positive

integers p and q, find a q-admissible p-way partition of G with the lowest partition-

cost. Since graph partitioning is known to be NP-complete [29], heuristics have been

used to find acceptable solutions.

Kernighan and Lin [43] consider the case where all wa = 1. They allow

the edges to be weighted. Their work is motivated by two applications; placing the

components of an electrical circuit onto printed circuit boards so as to minimize con-

nections between cards, and improving the paging properties of computer programs

by assigning subroutines, procedure blocks, data items, etc., to pages of memory so

as to minimize the references to objects that reside on different pages. They first

consider 2-way partitions. An initial partition is made and then repeated pairwise

exchanges are made to improve the initial partition. Empirically, they determine

that the time complexity of this heuristic for finding a 2-way partition in a graph

with u vertices is O(u2). A feature of this work is that sequences of perturbations

are considered rather than single perturbations which endows the method with some

ability to bypass local minima. This is superior to other simple local heuristics. Fi-

nally, k-way partitions are made using repeated application of the 2-way procedure.

Fiduccia and Mattheyses [25] improve the Kernighan-Lin work. They use

eMcient data structures and vertex displacements instead of exchanges to derive a

linear time heuristic for improving 2-way graph partitions.

Gilbert and Zmijewski [32] develop a parallel version of the Kernighan-Lin

algorithm to find low cost partitions for factorization of sparse matrices. These

partitions are then used to compute orderings for factoring matrices. In addition

to reducing fill, the resulting orderings lead to good processor utilization and low

communication overhead. The computational complexity of the algorithm they

develop is O(gT log UT log up).

23

To find a 2_-way partition in G.

Set p°o= Va

do i=0, ..., n-1

do j=0, 1, ..., 2 i+1-1

Compute x2 of _j.

Sort the components of x2.

Assign half of the vertices and edges corresponding to the smallest com-
.pi+aponents in x2 to r2j and those corresponding to the other half to

,_i+1
2j+l"

enddo

enddo

P_, i = 0, 1,... ,2 _ - 1 are the subgraphs of G.

Figure 2.2: Recursive Spectral Bipartition (RSB) Algorithm.

Pothen, Simon, and Liou [55] and Simon [70] partition the graphs of sparse

matrices using the spectral method of Fiedler [26, 27], also called recursive spectral

bipartitioning (RSB). The RSB method for graph partitioning uses the eigenvector

x2 corresponding to the second largest eigenvalue A2 of the Laplacian matrix of

the graph to find vertex separators. The largest eigenvalue of L(G) is zero. If G

is connected then A_ is negative. If the vertices of a graph are numbered from 1

to v, then the i th component of an eigenvector corresponds to the i th vertex. The

components of x2 yield a weighting for the corresponding vertices. The differences

in these weights give relative distance information about the vertices of the graph.

Sorting the vertices according to their weights provides a way to partition G. The

algorithm used in [55, 70] to compute a 2'* - way partition of a graph G is shown

in Figure 2.2. They show that RSB is much better than other methods for finding

vertex separators to partition graphs, such as the nested dissection algorithm of

George [30].

24

SA is an optimization technique from statistical mechanics. It simulates the

slow cooling of solids to develop efficient methods for finding the extremum values

of a function with many independent variables. SA works by iteratively proposing

new values of the independent variables and then evaluating the objective function.

If the value of the objective function for the new values is less than the value of

the objective function for the previous values, then the new values are kept. If the

objective function increases, then the new values are kept with some probability.

This process is repeated until a desired solution is achieved or a maximum number

of iterations is exceeded. SA requires the user to specify parameters of the algorithm

- beginning and ending "temperatures" and a "cooling" schedule. However, finding

a combination of these that produces a good mapping in a small amount of time is

very difficult since they may differ for every task graph and every processor graph.

Savage and Wloka [63] introduce a parallel heuristic for bi-partitioning random

graphs. It incorporates some features of the Kernighan-Lin heuristic and some

features of simulated annealing (SA) [44]. The Savage-Wloka heuristic randomly

groups large numbers of equally good candidates into sets and then deterministically

swaps sets between partitions. They call this the Mob heuristic and it is implemented

on a CM-2. They show that Mob, used on two standard random graph test cases,

achieves lower cost partitions than their implementation of the Kernighan-Lin and

SA heuristics.

Another approach to solving the partitioning problem is to use a genetic al-

gorithm (GA) - a stochastic search and optimization technique. Talbi and Bessi_re

[75] implement a parallel GA on a mesh of 64 Transputers. They partition task

graphs with unequal vertex weights and assume that the processor graph has uni-

form vertex weights. The objective function Atb they minimize is the sum of the

inter-partition communication costs plus the variance of the sum of the weights of

the tasks assigned to each partition.

25

Generate initial population S.

do number-of-generations times

foralkr C S, evaluate Atb

Select pairs of individuals to reproduce.

Apply genetic operators to pairs selected to reproduce.

Eliminate a's with largest Atb , keep population size constant.

enddo

Choose best individual from the population as the solution.

Figure 2.3: A Typical Genetic Algorithm.

To find a vp-way partition in a task graph using a GA heuristic, the search

VTspace (of size Vp) is the set of VT-vectors with components in Vp. A GA starts

with a set of VT-vectors called the initial population, which is typically generated

randomly. Each member of the population is called an individual. A set of genetic

operators is used to generate new individuals from the initial or previous population

using a process called reproduction. During reproduction, some of the individuals

are replaced keeping the size of the population fixed. The basis of GAs is as fol-

lows: the closer an individual comes to minimizing the objective function, the more

likely it is to reproduce. Two common forms of reproduction in a GA are crossover

and mutation. Crossover is the process of splitting two individuals (n-vectors) at

the same random location and exchanging corresponding sections to make two new

individuals. Mutation is the process of changing a randomly selected element or

elements of an individual to a randomly selected Vp. The probability that an in-

dividual selected for reproduction goes through crossover or mutation is a tunable

parameter which can change from iteration to iteration. A typical GA is shown in

Figure 2.3.

In [75], the GA is parallelized by having a population of 64 individuals each

26

assigned to one of the 64 processors. Evaluation of f for each individual is done

in parallel. Each a assigned to processor p considers a subset of the population for

reproduction. A possible subset are the cr's assigned to processors that are directly

connected to p. Other subsets are possible, this is another tunable parameter.

Talbi and Bessi_re compare their parallel GA with serial implementations of

a hill-climbing heuristic and a SA heuristic for two test problems: find an 8-way

partition in a task graph with 32 vertices and find a 4-way partition in a task graph

with 64 vertices. They show that using their GA algorithm on the two test cases

results in lower values of the objective function than when they use their hill-climbing

and SA heuristics.

The problem with using a GA is that there are many parameters that the

user must set: (1) the probability that an individual will go through crossover, (2)

the probability that an individual will mutate, and (3) the subset of the population

with which each individual can reproduce. Finally, the user sets the order that the

t E VT appear in the n-vector representing each individual in the population. The

order is important because crossover exchanges groups of contiguous elements. The

entries representing tasks that reside near each other in an n-vector are likely to be

changed together. A good choice of these parameters can result in a GA producing

a good mapping. However, such a combination is very difficult to find since they

may differ for every task graph and every processor graph.

2.5.2 Graph Embedding

One problem that has been studied is whether a graph T can be embedded into

graph a P such that Aoo = 1. This is equivalent to asking if T is a subgraph of P.

The general problem is NP-complete. It has long been known that multi-dimensional

grids of suitable dimension can be embedded as subgraphs of the hypercube by means

of gray codes [31]. Independently, Krumme, Venkataraman, and Cybenko [45] and

27

Afrati, Papadimitriou, and Papadimitriou [1] show that the problem of deciding

whether an arbitrary graph is a subgraph of a hypercube is NP-complete.

Bhatt and Ipsen [10] show that a complete binary tree with 2"- 1 nodes can be

embedded in a 2n node hypercube with Ao_ = 1 everywhere except one edge which

has dilation 2. Chan and Chin [16] consider embedding 2D grids into hypercubes

with at least as many nodes as grid points. They develop an embedding scheme for

an infinite class of 2D grids such that Aoo _< 2.

Savage and Wloka [64] embed large random graphs in grids and hypercubes

using their Mob heuristic [63] on a CM-2. It exchanges the assignment of large sets

of vertices at once. They show that for two standard random graph test cases, they

achieve lower cost embeddings than a heuristic based on SA.

2.5.3 Ercal's Example

As mentioned above, one can first partition the task graph and then embed the

partitioned graph into the processor graph. Ercal et al. [23] argue that this is not

a good approach to solving the mapping problem. They claim that performing the

two operations in isolation can lead to poor mappings and much less than optimal

communication time. Also, they say that graph partitioning techniques based solely

on minimizing the number of edges cut, subject to some load balancing constraints,

can make poor choices for partitions. Ercal et al. use the following example to

illustrate this. Consider mapping the tasks of a 40 x 20 task graph to a 2-cube (4

processors) by first computing a 4-way partition of the graph. Figure 2.4a-c shows

three 4-way partitions of the grid and the quotient graph. The first partition is the

wide vertical line splitting the grid into two 20 x 20 pieces. After the first partition is

made, there are 4 possible choices for the second level partitions. Three of these are

shown in the figure. The one not shown is the same as shown in Figure 2.4a except

that the right partition is made with a horizontal line and the left partition is made

28

O1

O0

![!

_!!!!

::: i i

::z : :

A
v

a: 4-way partition and its quotient graph

01

ii_ !!i-_

10 v

:_!ii

b: 4-way partition and its quotient graph

::z 7 i

A A A _w w w

c: 4-way partition and its quotient graph

Figure 2.4: Possible 4-way graph partitions, processor mappings, and

quotient graphs of a 40×20 grid.

29

with a vertical line. All four partitions are optimal - the sizes of the partitions are

the same and the number of edges cut are the same. However, they are not equal

from the embedding perspective. The quotient graph has to be embedded in the

system graph. Partitions 2 and 3 can be embedded into a 2-cube with A_ = 1

while partition 2.4a (and the similar partition not shown) cannot. The quotient

graph in partition 2.4a has an odd length cycle and hypercubes do not. Therefore,

embedding the quotient graph of this partition will result in A_ = 2. Additionally,

embedding partition 2.4a (and its similar partition) into a 2-cube will result in All

>_ 2. Partitions 2.4b and 2.4c can be embedded into a 2-cube with All = 1. A

mapping scheme that independently partitions and then embeds has a 50-50 chance

of finding an optimal solution to this example mapping problem.

Even though this simple example shows that partitioning followed by embed-

ding can lead to a poor mapping, we show that, in practice, partitioning followed

by embedding produces good mappings. In particular, we achieve the best map-

pings for our test cases by using spectral partitioning and embedding the quotient

graph into the into the processor graph to form an initial mapping and then using

CPE to further improve the mapping. Also, graph partitionings that minimize the

partition-cost are well-suited for parallel computers with high latency, because the

communication time due to the distance between processors is negligible.

2.5.4 Mapping Problem

We now discuss prior work on the mapping problem. We highlight the most

significant contributions to the area. They are presented in chronological order.

Stone [73] develops a one-pass heuristic for the mapping problem. He uses

a network flow algorithm as a "black box" utility to map a task graph to a two-

processor system. A network representation of the mapping problem is constructed

and fed to a network flow algorithm.

3O

s2

Figure 2.5: A network flow graph constructed from a task graph with

two vertices.

The construction of a network representation N of the two-processor mapping

problem is as follows:

1. N=T.

2. Add nodes labeled S 1 and s2 to VN representing the two processors, sl is the

unique source and s_ is the unique sink.

3. For each v • VT, add an edge {V, Sl} and {v, s2) to EN.

4. Let c({v, Sl}) be the estimated time to execute task v on processor s2 and

c({v, s2)) be the estimated time to execute task v on processor sl.

The edge weights are chosen so that the weight of a cutset of N is equal to the

execution time of the corresponding task-to-processor mapping. An optimal map-

ping of tasks to two processors is found by finding a minimum weight cutset, and

assigning tasks to the processor on the same side of the cut.

For example, in Figure 2.5 we show a task graph T = (VT, ET) where VT =

{u,v} and ET = { {u, v), (v, u) }. The edge weights are c((u,v)) = 2 and c({v,u}) =

2. A network is constructed by adding the vertices Sl and s_ and edges (u, sl), (u, s2),

31

(v, sl), and (v, s2) with weights c((u, s1)) = 10, c((u, s2)) = 10, c((v, sll)= 10, and

c((v, s2)) = 10. Therefore, the tasks execute equally well on either processor and

five times as much time will be spent computing as communicating.

Network flow algorithms do not always provide good solutions to the mapping

problem. In the example above, the maximum flow algorithm assigns both u and v

to the same processor since there are two minimum weight cutsets with weight 20,

{(lZ, 81) , (I), 81) } and {(u, s2), (v,s2)}. Putting both tasks on one processor results in

a running time of 20; one only task computes at a time. The communication time

is zero since both tasks are in the same processor. However, if the computations

can be done in parallel and the communications are completed serially, then the

running time when the tasks are mapped to different processors is 14. Constructing

a network in this manner does not account for the concurrency in the two tasks.

The result is a mapping that requires more execution time than if the tasks were

mapped to different processors. Additionally, using a network flow based heuristic

to solve the mapping problem is computationally expensive. Efficient Max-Flow

Min-Cut algorithms are of complexity O(gNVN log vm) [28].

Stone generalizes this approach to vp-processor networks although he does

not give a complete efficient algorithm. He shows that a single source network flow

algorithm can give information about the minimal weight cutset in a vp-processor

graph. Let S = {Sl, ..., s,} be the distinguished nodes representing/]p processors.

For i = 1, ..., vp, run a single source network flow algorithm using si as the source

node and S \ si sinks. Stone proves that if some v is associated with si by the two-

processor flow algorithm then v is associated with si in a minimum cost cutset in a

re-processor network. Unfortunately, one can construct examples in which some v

is mapped to a processor in the vp-processor cutset, but fails to be associated with

that processor by the two-processor cutset. Therefore, even after Vp applications of

the two-processor network flow algorithm, some subset of VN may not be mapped

32

to a processor.

Bokhari [12] developsa combined deterministic and probabilistic, iterative

heuristic. The objective function he usesis AB. The heuristic consistsof pairwise

exchangesthat attempt to maximize AB. First, an initial assignmentof tasks to

processorsis made. Next, the heuristic loopsfor eachof the /.IT tasks:

1. Consider swapping the mapping of this task with the mapping of all other

tasks.

2. Exchange processor assignments between the pair that leads to the largest

increase in AB.

In this inner loop, only one pair of vertices can change their mapping at each it-

eration. If at least one exchange is made through the loop over all tasks, the loop

is repeated. If no exchange is made, the current mapping is saved and a random

jump to a nearby mapping is made by permuting the mappings of _ randomly

selected tasks. If the new (permuted) mapping has a smaller value of As than the

saved mapping, then the saved mapping is kept and the heuristic stops. If the new

mapping has a larger value of AB than the saved mapping, the new mapping replaces

the saved mapping and the loop is repeated until no further improvement is made.

The complexity of the outer iteration for this heuristic is O(n2). It is not efficient

for large problems.

Lee and Aggarwal [48] develop a deterministic-iterative heuristic mapping

strategy for parallel processors using an accurate characterization of the communi-

cation overhead. Their target machine is the hypercube and they assume UT = up.

They introduce three objective functions to evaluate the quality of a mapping. The

first objective function is the sum of the message cycles from each task which is

appropriate if no two communications occur at the same time. The second objec-

tive function is the maximum number of message cycles which is appropriate if all

33

communications occur simultaneously. The third objective function is the sum of

the maximum number of message cycles at each stage which is appropriate if the

communication occurs at different stages. To evaluate the objective functions one

must assign task graph edges to processor graph paths every time the mapping is

changed. An initial assignment of tasks to processors is made using a one-pass ap-

proach which attempts to match the communication requirements of tasks to the

communication capacities of processors. The complexity of the initial mapping is

O(u_,) [48]. Then, they perform serial, pairwise exchanges and evaluate the quality

of the mapping using the appropriate objective function. The pairwise exchange

used is similar to the one used by Bokhari [12]. The objective function is evaluated

for every candidate exchange. The pairwise exchange that results in the largest

decrease in the objective function is made.

Berger and Bokhari [7] study mapping refined grids to parallel processors inter-

connected by a mesh, binary tree, and a hypercube. The task graphs they consider

are initially regular grids that are refined by imposing increasingly finer grids over

a region of the global coarser grid. They use As as the objective function and a

one-pass algorithm to map tasks to processors. The task graphs are partitioned into

load-balanced, disjoint subgraphs by recursive orthogonal bisection (ROB). ROB re-

cursively partitions a planar graph by placing a horizontal or vertical line such that

half the vertices lie on either side of it. Each half is then bisected in the same man-

ner by a line orthogonal to the previous partitioning line. This is done recursively

until the number of partitions matches the number of processors. The partitions are

then embedded in the processor graph. They achieve lower cost mappings on the

hypercubes and meshes than on the binary tree interconnection schemes. However,

the results for the hypercube are only marginally better than for the mesh. No ex-

periments are performed to show that communication time on a hypercube, mesh,

or binary tree connected multiprocessor decrease as predicted by the As.

34

Berman and Snyder [8] study the graph mapping problem and use context-

free grammars to generate a class of task graphs. The class includes complete

binary trees, cube-connected cycles, hex and square meshes, toruses, linear and

multidimensional arrays, butterflies, and complete graphs. The task graphs are

then partitioned and embedded in the processor graphs. The partitioning is done

by "contracting" the task graph into a similar graph (one also generated by the

same context free grammar) with fewer vertices. This is done repeatedly until the

contracted task graph and the processor graph have an equal number of vertices.

This work does not apply to the unstructured grids considered here.

Ercal et al. [23] map finite element grids with several hundred grid points to

a hypercube using a one-pass heuristic. They compare SA to a recursive bisection

method based on the Kernighan-Lin work and use Ap as the objective function.

They show that, on average, their recursive bisection scheme reduces the objective

function almost as well as the SA approach, but requires approximately two orders

of magnitude less time to achieve the results. No timings were made utilizing these

schemes in an application running on a hypercube.

Sadayappan et al. [60] compare two one-pass heuristic algorithms for mapping

regular grids to hypercubes: a cluster mapping and a nearest neighbor mapping.

The cluster mapping is based on the Kernighan-Lin algorithm. The nearest neigh-

bor mapping requires a regular grid in order to be effective. They show that cluster

mapping is more effective than the nearest neighbor approach at reducing communi-

cation time for systems with high message startup costs. Neither approach produces

parallel efficiency greater than 50% when mapping irregular grids to a 16-processor

iPSC/1. No mention is made of how they embed the quotient graph.

Williams [81] compares three parallel partitioning techniques for graph map-

ping: SA, ROB, and RSB. He assumes that interprocessor communication time is

independent of the distance between processors and does not give any details about

35

how the quotient graph is embeddedinto the processorgraph. The implementation

is on a 16-processorNCUBE machine. In his experiments,execution time of ROB

is lessthan the executiontime of RSB. The parallel implementation of SA takes20

times longer to run than RSB for his test cases. Finally, the running time of an

application is measuredafter being mappedby the threemethods. For a task graph

of 5772nodes,the running time of the application is fastest for SA and slowestfor

ROB. Even though SA ran significantly longerthan ROB, the running time for the

SA-partitioned application (best mapping) was21% lessthan the running time for

the ROB-partitioned application (worst mapping).

DaM[19]developsaparallel implementationof SA on the CM-2. Heshowsthat

it is effectiveat reducing A and the communicationtime for the classof problems

consideredhere. It isattractive becauseit canachievegoodresultsif run long enough

and typically avoidsgetting stuck in local minima. However, as was mentioned

before, it requires the user to specify parametersof the algorithm. Like the GA

usedfor graphpartitioning, optimal choiceof theseparametersdiffer for everygraph

and if chosenincorrectly can greatly increasethe running time of the heuristic. In

Chapter 3, wecompareDahl's implementationof SA and CPE for severaltest cases.

Saltz et al. [62] use ROB to map two unstructured task graphs arising in

computational fluid dynamics. They compare the communication time for each

task graph after using a ROB and a gray code initial mapping. They define a gray

code mapping to be the assignment of task t to the processor whose number is the

binary gray code of t. But, since the numbers assigned to tasks are not done in

any particular order, this can be a poor mapping. Compared to their gray code

mapping, ROB reduces the communication time by a factor of 2.31 and 4.75 on an

8K processor CM-2 for their two test cases.

Search techniques are exact algorithms that have been used to solve the map-

ping problem. Shen [68] considers an optimal assignment in which communicating

36

modules are required to reside in the same or neighboring processors. An A* search

algorithm (an ordered search of a general state space graph) is used to search the

space of feasible assignments. Sinclair [71] uses a state space reduction technique

(branch-and-bound-with-underestimates) to find optimal embeddings. The draw-

back of search techniques is that for t/T tasks and up processors there are (UT) :P

possible assignments of tasks to processors. Searching is not feasible for large prob-

lems since in the worst case it requires a complete enumeration of all possibilities

and this is prohibitively expensive for large UT and up.

Work on the mapping problem has also been done by others. Reed et al. [56]

and Lee [47] study the mapping of regular grid problems arising in finite difference

equations to hypercubes. They show that non-rectangular (e.g., triangles, diamonds,

and hexagons) partitions are better for some discretization stencils than rectangular

partitions.

Schwan et al. [66] develops a one-pass algorithm to map regular grid problems

to hypercubes. He assigns horizontal or vertical strips of the grid to processors in

the hypercube. This approach is limited to regular grids.

Lo [50] extends Stone's network approach. Recall that in a homogeneous

system, an optimal network solution will map all tasks to one processor. She adds a

penalty function to distribute the tasks to multiple processors. However, repeated

use of the Max-Flow Min-Cut algorithm is too expensive for this approach to be

practical for large problems.

Yalamanchili and Lee [82] use SA to solve the mapping problem. For their

tests, they map a 4-cube to a 4-cube, a 5-cube to a 3-cube, a regular mesh of 16

tasks to a mesh connected processor with 16 nodes, and 16 tasks interconnected in

a 2-D torus to a 4-cube. A random initial mapping of tasks to processors is used

and 50 trials are run for each test case. The optimal mapping is achieved in 90% of

the trials for each test case.

37

Andrd et al. [3] compare the performance of four mapping algorithms. They

implement the pairwise exchange algorithm of Bokhari, an SA algorithm, and two

one-pass algorithms. They use AB as the objective function. The first one-pass

algorithm assigns tasks to processors one by one, assigning the unassigned task that

optimizes the objective function at each step. The second one-pass algorithm works

similarly except that it assigns the unassigned task with the highest communication

load with previously assigned tasks at each step. The following task graphs are

mapped to a 4-cube: a 4x4 grid, a complete binary tree of 15 nodes, and a 4-cube.

They achieve optimal or near-optimal mappings for these small test problems using

the algorithms. However, SA requires a factor of 50 more time than the others to

achieve the same results.

2.6 Summary of Prior Work

The prior work described here demonstrates that heuristics can effectively re-

duce the communication time of parallel applications by assigning communicating

tasks to nearby processors. They also show that it is important to have an objective

function that can be quickly evaluated and that accurately predicts the communi-

cation time of an application on a parallel computer. Although several different

objective functions were introduced above, it has not been shown that a reduction

in these objective functions produced a commensurate reduction in the communi-

cation/execution time of an application. Lee and Aggarwal [48] advocate using the

actual communication overhead but, in practice, this is difficult to obtain.

Another open question concerns the efficiency of the heuristics that have been

developed to date. All of the deterministic-iterative heuristics are variants of the

pairwise exchange algorithm developed by Bokhari [12]. It requires O((uT) _) opera-

tions per loop since one tries to exchange the mapping of each task with the mapping

of every other task. This requires global information which is inefficiently gathered

38

on massively parallel computers; the processors are typically sparsely connected. In

the next chapter we develop the Cyclic Pairwise Exchange heuristic which has serial

complexity O(uT). One considers exchanging the mapping of each task with a small

set of other tasks assigned to neighboring processors.

CHAPTER 3

THE HEURISTIC

3.1 Description of CPE

In this chapter we discuss Cyclic Pairwise Exchange (CPE) and how it is used

to find the mapping k0 : VT _ Vp that reduces A1 and thus the communication time.

Also, we show that reducing the number of message cycles produces a commensurate

reduction in the communication time and we show that there is good correlation

between A1 and the number of message cycles.

Recall from (2.2) that

A,=
(u,v)6Er

CPE starts with an initial assignment of tasks to processors and a proper k-edge-

coloring of the processor graph P. It loops over the edge colors, iteratively improving

the mapping by performing, in parallel, pairwise exchanges of the tasks among

processors connected by an edge of the selected color. We call one loop over all k

colors a sweep.

For u C VT and q Or.Vp, define

.X(u,q) = __, CT((U,v))d(q, kO(v)).
veadj(u)

It is the weighted sum of the distances that all data originating at a single vertex

u must travel under the mapping ql restricted to VT\U, if u is mapped to processor

q. Also, let reduc(u,q) = _(u, _(u))-)_(u,q), the amount that A1 is reduced if u

is remapped to processor q and all other task mappings remain unchanged. Finally,

for r, q E Vp, best(r, q)is the task u with kO(u) = r and reduc(u, q)is maximum, or

the task currently mapped to processor r that causes the largest reduction in A1 if

it is instead mapped to processor q.

39

4O

do sweeps = 1, max # sweeps

do i= 1, ..., k

forall q, r E Vp such that (q, r) C E_:

Compute best(r, q) and best(q, r).

if ((reduc(best(r,q),q)+ reduc(best(q,r),r)) > 0) then

Exchange mappings of best(r, q)and best(q, r).

endif

enddo

if (A1 _< tolerance) stop

enddo

Figure 3.1: The CPE Algorithm.

The CPE algorithm is shown in Figure 3.1. CPE loops over subsets Eb,

i = 1,..., k. Each edge (r, q) E E}_ connects a pair of processors and, since the edge

coloring is proper, r and q are not adjacent to any other edge in E}_. CPE chooses

two vertices that are mapped to the pair, one mapped to r and one mapped to q,

and tries to exchange their mappings. One pairwise exchange is possible for each

edge. The exchange that causes the largest reduction in A1 (if any) is made every

iteration. (Each pair independently chooses to make an exchange or not.) Note

that an exchange is made if the sum of the two reductions is non-negative. Moving

one node may contribute negatively, but as long the negative reduction is offset by

a positive reduction of sufficient magnitude from the other vertex, the exchange is

made.

In each sweep, a task v E VT has the opportunity to exchange its position with

any task u C VT, such that d(_(v), _(u)) = 1. CPE differs from prior heuristics in

several ways. The set of possible exchanges for a vertex v E VT is a small subset of

VT rather than all of VT. Also, the subset is defined by processor graph neighbors of

k0(v) rather than task graph neighbors of v. This was done so that, in parallel, each

41

Figure 3.2:

_1011

ooo1 I iillI
_ sso °

0101_ _,,"1101

A 4-cube with edges of E_, highlighted, splitting the 4-cube
into two 3-cubes.

processor could compute the value of best and then exchange information with a

neighboring processor to perform the pairwise exchange. One can take advantage of

fast nearest neighbor communications without using a slower global communication

network to perform the exchange. Also, parallel exchanges of Vp pairs can occur

each iteration.

The implementation of CPE on a k-cube, mapping a task graph to a k-cube

P, is as follows. For a k-cube, x'(P) = k. In this minimum edge coloring, an edge

(r, q) E E_ if and only if the binary representations of r and q differ in only the i th

bit position. For each i, the k-cube is partitioned into two (k- 1)-cubes. Figure 3.2

shows a 4-cube partitioned into two 3-cubes. The dashed lines represent edge color

1 and they highlight pairs of hypercube processors. Note that processors (0001) and

(0000) only differ in the 1't bit position and therefore are connected by a dashed

line. CPE loops over each of the k edge colors of the hypercube, splitting the cube

in half each iteration, and making pairwise exchanges between subcubes. CPE is

implemented similarly on 2-D and 3-D grids and 2-D and 3-D tori.

42

3.2 Complexity of CPE

Here we discuss the complexity of CPE. Assuming that an equal number of

tasks are mapped to each processor, each processor holds u = tasks. Also,

assuming that A(T)is O(1), computing best(r, q) and best(q, r), for q, r • Vp, costs

2u. One sweep takes k steps, where k =)_(P). At each step there are at most

up such pairs of processors computing best. Therefore, each sweep has of CPE has
2

serial complexity

or

Simplifying this yields

O(k.r).

However, k is a low order term that is either a constant or grows slowly as a function

of P. For example, k is a constant for grids and tori and k grows as the log 2 up for

hypercubes. Therefore, the serial complexity of CPE is

O(.T).

Since the procedure best can be computed by all pairs of processors in parallel, the

parallel complexity of CPE is

3.3 Description of Test Cases

We use a variety of test cases to verify the operation of CPE. These are listed in

Table 3.1. Test cases 3elt, _elt, and 4elt-2 are triangular grids around multi-element

airfoils; bump is a triangular grid over a bump; motor is the graph of a matrix from a

nonlinear magnetostatic model of a permanent magnet motor, using an unstructured

43

Test Case
3elt
4elt
4elt-2
bump
motor
bracket
rotor
viking

l/T

4720

15606

11143

9800

6517

62631

99617

156317

[CT _(T) I a(T)] dim.
27444 3 9 2-D

91756 3 10 2-D

65636 3 12 2-D

57978 3 8 2-D

126306 7 44 2-D

733118 3 32 3-D

1324862 5 125 3-D

2118662 3 44 3-D

Table 3.1: Description of Test Cases.

finite element mesh with mixed triangular and quadrilateral third-order elements [6];

bracket is from structural mechanics [69]; rotor is an adapted tetrahedral grid around

the helicopter rotor wing NACA 0015 [74]; viking is a tetrahedral grid describing

the Lockheed S-3A Viking aircraft.

The table shows the number of vertices, the number of edges, the minimum

degree and the maximum degree of the task graph for each test case. Also, the last

column tells whether the problem is two dimensional or three dimensional. Pictures

of most of the test cases as well as a histogram of the vertex degrees of all test cases

are given in Appendix 1.

3.4 Calibration of Message Cycles and Communication Time

Before we verify the operation of CPE with the test cases, we first have to show

that the communication time is a function of the number of message cycles. Then we

show that reducing A1 reduces the number of message cycles. CPE reduces A1 which

approximates the number of message cycles required to schedule the communications

for a particular assignment of tasks to processors. In this section we calibrate the

message cycles and actual communication time on the CM-2 for the one-to-many

operation and then in the next section we verify the choice of A1 as the objective

44

function.

Recall from (1.5) that the time to send one or more 32-bit words on the CM-2

using version 6.0 of the communication compiler [20] is:

timeoM = (26 + 51msg_cycles + VPratio (17src + 57rcv)) #sec.

The startup cost is 26 #sec. The quantity msg_cycles are the number of message

cycles; src is the maximum number of unique 32-bit words being sent from any

processor; rcv is the maximum number of unique 32-bit words being received by

any processor. For the one-to-many operation, we can rewrite this as

timeeM = (51msg_cycles + 26 + [17 + 57(A(T))l) #sec, or

timecM = (51rnsg_cycles + overhead)#sec.

We use the number of l-bit processors (proc) rather than vp above since this timing

model is a function of the amount of work done by each l-bit processor. Once we

know proc and the task graph that we are mapping we can calculate the overhead.

In a load-balanced mapping, the overhead is independent of the mapping.

In the next three figures we show the number of message cycles, the commu-

nication time predicted by (1.5) in msec, and the measured communication time

msec the one-to-many communication on the CM-2. Each test was performed 1000

times and the average time is given. The different message cycles resulted from

using different combinations of options to the communication compiler. We do not

discuss the options since the communication compiler is not the focus here, it is

used only as a tool to evaluate the results of CPE. The timings are obtained from

CM Fortran.

Figure 3.3 shows different numbers of message cycles and times for the 3elt

test case. Using information from Table 3.1, we can compute the overhead = 26 +

742o] (17 + 57.9) = 556 #sec (per iteration). The predicted time is consistently
8192]

about 0.5 msec less than the actual time.

45

Figure 3.3:

Predicted vs. Measured Communication Time

2.5

1.5

0.5

3oR test case

meast_red

predicted

05 3'0 ;5 4'o

Message Cycles

Calibration of Message Cycles and time in msee for the

one-to-many operations on 3elt test case on 8K CM-2.

Figure 3.4 shows different numbers of message cycles and times for the 4elt

[ls606] (17 + 57.10) = 1200/_sec. The predictedtest case. The overhead = 26 + / s192 !

time is approximately 0.9 msec less than the actual time in each case.

Figure 3.5 shows different numbers of message cycles and times for the bracket

[62631] (17+57.32) = 7390 gsec. Fortest case on a 16K CM-2. The overhead = 26+ 116384[

this test case, the predicted time is between 0.4 and 1.5 msec less than the actual

time.

These tables show that the communication time is a function of the number

of message cycles plus the overhead. In general, there is close correlation between

the predicted communication time as a function of the number of message cycles

and the actual communication time. When the number of message cycles is large,

the 51 _tsec per message cycle time dominates the communication time. Therefore,

reducing the number of message cycles reduces the communication time.

46

Figure 3.4:

Predicted vs. Measured Communication Time

o /
4tit test case _,"

oo .,"'""

measured

p_.,diete_

i ,

Message Cycles

Calibration of Message Cycles and time in msec for the

one-to-many operations on 4elt test case on 8K CM-2.

Figure 3.5:

30

25

20

15

10

Predicted vs. Measured Communication Time

Bracket test case "'I"'° _

measured

p_cted

?00 150 200 250 300 350 400

Message Cycles

Calibration of Message Cycles and time in msec for the

one-to-many operations on bracket test case on 8K CM-2.

47

sweeps

A1

A_

msg_cycles

4elt, A(T) = 10

initial mapped

51

116442 48284

28.42 11.78

8 8

47 22

34704 47985

17280 20717

10390 5272

motor, A(T) = 44 bracket, A(T)= 32

initial mapped initial mapped

25

350238 115776

85.50 28.26

8 6

89 21

30314 47324

9682 45421

12759 19721

- 133

1447634 358688

353.42 87.57

8 7

371 72

293208 422965

36080 179620

64370 55298

6169 1477

3927 513

2098 109

1061 49

393 23

128 5

19111

20849

16193

8124

2371

386

5844

1260

193

26

85065 10846

97583 1601

66261 153

23606 3

3834 1

480

Table 3.2: Comparison of A1 versus Aoo for predicting number of mes-

sage cycles, naive initial mapping.

3.5 Verification of Objective Function

We now show the correlation between the objective function A1 and the

number of message cycles. Also, we compare A1 and Aoo as predictors of the

number of message cycles required to schedule a one-to-many communication for

three test cases.

In Table 3.2 we compare A1 and A_ after mapping the 4elt, motor, and

bracket test cases with CPE. For each test case, we make comparisons for a naive

initial mapping (defined in the next section) and after CPE has been used to map

the task graph. We show the number of sweeps of CPE used, the values of A1, 3,,

A_o, message cycles, and a histogram of the distances that each word will travel for

each mapping.

Recall that A1 is the weighted sum of the distances that data must travel for

a given mapping. One can think of it as the total communication load generated by

48

qJ(T). The bandwidth is the total communicationcapacity of P. The load divided

by the capacity,

A1 (3.1)
= bandwidth'

should be a lower bound on the number of message cycles required. (As mentioned

above, on an 8K CM-2 the bandwidth is 4096 words/cycle.) In general, the number

of message cycles will be greater than _, . The number of message cycles is the true

communication overhead and/_ is an approximation that assumes that all wires are

equally loaded, which typically does not occur.

On the other hand, the scheduling of data to wires can be optimized for the

one-to-many operation, if one word is being sent to several tasks mapped to the same

processor. In this case, the word can be sent once and replicated at the destination

rather than being sent once for each receiving task. This explains why the number

of message cycles is less than .A. for the motor and bracket test cases.

Table 3.2 shows that for the three test cases, CPE reduced/_, by a factor of

2.41, 3.0, and 4.03 and the number of message cycles was reduced by factors 2.1,

4.2, and 5.1, respectively. On the other hand, A_ was reduced from 8 to 6 for the

motor test case, from 8 to 7 for the bracket test case and not at all for the 4elt

test case. The histogram of distances shows that it is more important to reduce the

distances that each piece of data must travel rather than the maximum distance

that any piece of data must travel. We see that A is a good predictor of the number

of message cycles on the CM-2, A_ is not.

3.6 Initial Mappings - Definition and Comparison

As mentioned above, CPE starts with some initial assignment of tasks to

processors. Here we define and compare four different initial mappings used in

conjunction with CPE: naive, random, gray code, and RSB. RSB and gray code

initial mappings were defined in Chapter 2, but are defined again here.

49

The first initial mapping is a naive mapping. When discretizing grids are

created the grid points are usually given some numbering such as the order that

they are generated - the first grid point generated would be labeled number 1, the

second labeled number 2, etc. Let there be one task associated with each grid point,

task 1 associated with grid point 1, ..., task i associated with grid point i, etc. A

naive embedding of the task graph to the processor graph assigns task 1 to processor

graph vertex 1, ..., task i to processor graph vertex i, and so forth. If m -- ,

then for a naive mapping, tasks 1 to m are mapped to processor 1, tasks (m + 1) to

2m are mapped to processor 2, etc.

The second initial mapping we use is a random mapping scheme, a random

permutation of the task graph vertex numbers followed by a naive initial mapping

of the permuted values.

The third initial mapping is a gray code mapping. Recall that in a gray code

initial mapping, one first computes the binary gray code of each task number and

then computes a naive mapping of the binary gray code values of each task.

The fourth initial mapping used is RSB. Pothen, Simon, and Liou [55] and

Simon [70] they showed that RSB produced lower cost partitions than ROB or nested

dissection partitioning techniques. RSB is the only partitioning scheme from Section

2.4.1 that we use as an initial mapping. RSB initial mapping is a two step process.

First, we use RSB to compute a vp-way partition of the task graph. Then, we use

CPE to embed the associated quotient graph in P, performing pairwise exchanges

on groups of task graph vertices represented by the quotient graph vertices. The

embedding starts with a naive assignment of vertices from the quotient graph to the

processors.

5O

3.6.1 Comparison of Initial Mappings

Wehavedevelopedtwoimplementationsof CPE. Oneis a parallel implementa-

tion written in *lisp that runson the CM-2 and the other is a serial implementation

written in C. The parallel code maps task graphs to the CM-2 and is machine spe-

cific and differs slightly from the serial implementation. On the CM-2, the number

of tasks mapped to any sprint node is always an integer multiple of 32, since there

are 32 1-bit processors in each sprint node. To accomplish this, we augment the task

graph with wild card vertices. A wild card vertex is a vertex with no neighbors. For

example, in the 3elt test case CT = 4720 so we add 8192 - 4720 = 3472 wild card

vertices to T. In the parallel implementation of CPE, up to 32 tasks for the 3elt test

case will be mapped to any sprint node. The serial implementation maps no more

than m tasks to each processor, so using CPE to map T to an 8-cube results in some

processors having 19 tasks mapped to them and some having 18 tasks mapped to

them. Also, in the serial implementation, the user can specify the dimensions and

type of processor graph. The current options are hypercube, 2-D or 3-D grid, and

2-D or 3-D torus. Some of the experiments here are done using the serial code and

some are done using the parallel code.

Figures 3.6 through 3.11 compare the results of using the parallel implemen-

tation of CPE in conjunction with naive, gray code, and random initial mappings

for the 3elt, 4elt, and motor test cases. In each figure there are two graphs. The

upper one shows the reduction of A and the lower one shows the reduction of the

number of message cycles as a function of the number of CPE sweeps.

For the data in Figures 3.6, 3.8, and 3.10, two different initial mappings are

used. The first mapping is a naive mapping denoted by the solid line and the second

is the gray code initial mapping denoted by the dashed line. In Figures 3.7, 3.9,

and 3.11, three different random initial mappings are used followed by CPE. The

number to the right of the lower graph in each figure is the smallest number of

51

Reduction of lambda vs. Sweeps

3ell naive and gray code initial mapping

120

Sweeps

8

Number of Message Cycles vs. Sweeps

25 ' '

2O

15

10

naive

........ gray code5

0 2'0 ' ' 8'00 40 60

3elk naive and gray code initial mapping

{

I00 120

Sweeps

Figure 3.6: Reduction of _, and message cycles versus sweeps after

naive and gray code initial mappings on 3elt task graph.

52

30

25

2O

Reducliou of lambda vs. Sweeps

3¢1t, 3 random initial mappings

_v ..

random 1
-- random2
i.""._.".'.'._ random3

2_ 4'o _o 8'o 1_o 12o

Sweeps

30

25

2O

g_

10

5

0
0

Number of Message Cycles vs. Sweeps

3elt, 3 random initial mappings

• ' .. 12

randoml

random2

random3

2'o 4'0 6_ s'o l_o 120

SWC¢_$

Figure 3.7: Reduction of _, and message cycles versus sweeps with 3

random initial mappings on 3elt task graph.

53

Reduction of lambda vs. Sweeps

25 4¢1t, naive and gray code initial mapping

20

15

I01 "'""""" ...I _ graynaiVecode i

o io 4o 6b go lO0 12o

Swe_s

5O

4O

--_ 3O

g_

20

10

Number of Message Cycles vs. Sweeps

4¢1t, naive and gray code initial mapping

naive
........ gray code

°o io io _o ,'o ,6o

Sweeps

120

Figure 3.8: Reduction in _. and message cycles versus sweeps using

naive and gray code initial mappings on 4elt task graph.

54

9O

80

7O

60

50

40

3O

1

o

Reduction of lambda vs. Sweeps

4¢1t, 3 raadom initial mappings

random 1
-- random2
i_'"": random3

2'0 8'0

Sweeps

120

90

80

70

6O

50

40

30

20

10

0
0

Number of Message Cycles vs. Sweeps

'_!_, _ 4¢1t, 3 random initial mappings

19" " ""'_ - " ;_'_" "_ " [\" "_" •

random 1
_d_2
r_d_3

t i

20 410 60 80 100

Swe.,{_s

120

Figure 3.9: Reduction in A and message cycles versus sweeps using 3

random initial mappings for 4elt task graph.

55

B

A

90

80

70

60

50

40

30

20

0

Reduction of lambda vs. Sweeps

motor, naive and gray code initial mapping

naive

....... gray code

, i

20 20 60 80 lO0

Sweeps

120

Number of Message Cycles vs. Sweeps

L
120_ motor, naive and gray code initial mapping

I00

80 :;

6O

4o

21
20

naive

" gray code

O0 2'0 40 60 8'0 100

Sweeps

120

Figure 3.10: Reduction of A and message cycles versus sweeps after

naive and gray code initial mappings on motor task graph.

56

140

120

100

80

60

40

20

o 2'0

Reducfionoflambdavs. Sweeps

motor, 3 random initial mappings

40

Sweeps

F_it'6da-l"
-- random2
........ random3

0 I8 100 120

90

80

70

60

50

40

30

20

10

0

Number of Message Cycles vs. Sweeps

motor, 3 random initial mappings

21

r_d_ 1
r_d_2
_d_3

20 410 6() 8'0 100

Sweeps

120

Figure 3.11: Reduction of A and message cycles versus sweeps with 3
random initial mappings on motor task graph.

57

message cycles achieved in this figure.

These graphs illustrate several points. The heuristic effectively reduces A and

the number of message cycles. Qualitatively, the upper and lower graphs in each

figure have the same "shape" which indicates that A is a good predictor of the

number of message cycles and thus the communication time on the CM-2. Also,

CPE is sensitive to the initial mapping. In these three test cases, the naive and

gray code initial mappings resulted lower numbers of message cycles than any of the

three random initial mappings.

We cannot explain the oscillations in the lower graphs showing number of

messages cycles versus the CPE sweeps. We conjecture that the communication

compiler is very sensitive to small perturbations in the mapping.

In Figures 3.12 through 3.19 we use the serial implementation of CPE to com-

pare initial mappings for all test cases. We compare the mapping achieved by a

naive initial mapping followed by CPE, a random initial mapping followed by CPE,

and two different RSB initial mappings followed by CPE. The first RSB initial map-

ping starts with a random embedding of the quotient graph in the processor graph

and the second starts with a naive embedding of the quotient graph in the processor

graph. Both embeddings are improved using CPE. Finally, the partitioning infor-

mation is ignored and CPE is used on individual tasks. In each trial, we map the

task graph to an 8-cube, mapping an equal number of tasks to each processor.

In the curves corresponding to the RSB initial mapping, the point where the

line appears to level out is where the switch from pairwise exchange of partitions

to pairwise exchange between tasks occurs. We have duplicated the value of A to

mark the change.

In Figures 3.17 through 3.19 we show two graphs each. The top one depicts

all four sets of data graphed together and the bottom one shows just the two RSB

curves.

58

Reduction of iambda/bw vs. Sweeps: 3elt
3O

25 i

20

10

k

".

"'.,

8.-cube

random, C_
naive, CPE
RSB, rand, CPE
RSB, naive, CPE

5 ",,."............................IIT.I:Z---:-...
.....................___:::..

i

00 5

Figure 3.12:

I I i_o ,5 _'o 2'5 ;o 35 4'0 4'5 50

Sweeps

Reduction of A versus sweeps for 3elt test case.

Reduction of lambda/bw vs, Sweeps: 4elt

90 ,..

80 "', 8-cube

7O

6O

5O

40 / "" random. CPE
/ ',. naive

30 [- ",RSB, rand,CPE

10

0
0 I0 20 30 40 50 60 70 80 90

Sweeps

Figure 3.13: Reduction of A versus sweeps for 4elt test case.

59

70
Reduction of lambda/bw vs. Sweeps: 4elt-2

60

50

4O

30

20

10

0
0

\

Figure 3.14:

g-cube

random, CPE

'"".ii naive, CPE

" RSB, rand, CPE
'.. "............. RSB, naive, CPE

s.

1'o ;.o 3'0 20 ;o /,o _o _'o 9o

Sweeps

Reduction of/_ versus sweeps for 4elt-2 test case.

Reduction of lambdafow vs. Sweeps: bump
60 , . , , , ,

50 _ 8-cube

40

3O

| ',........... random, CFE
[. ,., naive, CPE

20 I" "'... ",., RSB, rand, ClaE

0
0 10 20 30 40 50 60 70 80

Sweeps

Figure 3.15: Reduction of _, versus sweeps for bump test case.

6O

140

120

I00

so

6O

4O

2O

Figure 3.16:

Reduction of lambda/bw vs. Sweeps: motor

8-cube

' ', "", random. CPE
•. ", ".............naive,CPE
" 'RSB, rand,CPE
'. "',,RSB, naive,CPE

.................
5 I0 15 20 25 30 35

Sweeps

Reduction of A versus sweeps for motor test case.

These figures show that an RSB initial mapping followed by CPE achieves

better mappings than random, naive, or gray code initial mappings followed by

CPE.

3.7 Comparison of Local, Distance 2 and Global Searches

As mentioned above, in each sweep, a task v E VT has the opportunity to

exchange its processor assignment with any task u E VT, if d(_(v), q'(u)) = 1. But,

one might wonder whether better mappings are possible if a task u could exchange

places with a larger subset of Vr. In this section, we quantify the difference in

mappings if the size of the subset is increased. We compare the serial implementation

of CPE as described above with two variations. In the first variation, a task v E VT

has the opportunity to exchange its processor assignment with any task u C VT, if

d(_(v), tY(u)) = 2. We call this distance-2 CPE since a task v can be exchanged

with a task mapped to a processor at distance one or distance two from _(v). In the

implementation of this algorithm, we find a proper coloring of all paths of length

one and two and use CPE as before. In the second variation, a task v exchanges

61

800

700

6OO

50O

-- 400
A

30O

200

Reduction of laxnbda/bw vs. Sweeps: bracket

100

0
0

"1

-L

8-cube

random, CPE
.......... naive, CPE
...................... RSB, rand, CPE

.............. RSB, naive, CPE

"%..

""-.-4

I i I i

210 40 60 80 100 120 140 160 180 200

Swe_s

140
Reduction of lambda/bw vs. Sweeps: bracket

130

120

110

100

90

80

70

60

50
0

RSB, rind, CPE

RSB, naive, CPE

llO 1'5 2J0 2'5 3'0 35

Swe_s

Figure 3.17: Reduction of 3, versus sweeps for bracket test case.

62

1400

1200

1000

800

A
600

%.¸.¸

400

200

0
0

Reduction of lambda/bw vs. Sweeps: rotor

8-cube

random, CPE
naive, CPE
RSB, rand, CPF
RSB, naive, CPE

-..°

i | i i i

50 1O0 150 200 250

Sweeps

30O

240 _ ,

220

200

180

160

140

120

100

80

Reduction of lambda/bw vs. Sweeps: rotor

\

"\,

""....... -. RSB, remd, CPE

""" RSB, naive, CPE

.o..._° ..

10 1'5 20 25 30 35 40

SWC_S

Figure 3.18: Reduction of/_ versus sweeps for rotor test case.

63

2500
Reduction of I_anbda/bw vs. Sweeps: viking

2O00

1500

1000

5O0

"- random, CPE
".. naive, CPE

"".. RSB, rand, CPE
"-. RSB, naive, CPE

"--.

8_u_

I I h

;0 100 150 200 250 300 350 400 450 500

Swe_s

Reduction of lambda/bw vs. Sweeps: viking
400 , , , ,

3_0ti

1

_ 250 f i,,\ RSB, r_d, CPE

RSB, naive, CPE

21)0

150
0 5 10 15 20 25 30 35 40 45 50

Sweeps

Figure 3.19: Reduction of/_ versus sweeps for viking test case.

64

4

3.5

3

2.5

A
2

1.5

1

0.5

0
0

Figure 3.20:

Reduction of lambda vs. Sweeps: 8-cube

Local, Dist2&Global search: 3elt

::-::::.,=-==.=.

local

distance 2

............................... global

' ' ' ' '0 ' ' 1'6 1'82 4 6 8 l 12 14 20

Sweeps

Reduction of A versus sweeps for three search distances on

3elt test case.

its mapping with any task u such that _(v) ¢ kg(u). We call this global CPE, since

a task can have its location exchanged with any other task. In the implementation

of global CPE, we exchange the mapping of task v with the task that causes the

largest reduction in A1. Note that global CPE is a sequential O(u_) algorithm.

In Figures 3.20 and 3.21 we compare the local CPE with distance-2 and global

CPE. In Figure 3.22 we compare local CPE with distance-2 CPE. We map the 3elt,

4elt, and bracket test cases to an 8-cube. In each figure, the distance-2 search results

in a better mapping than the local search CPE, but only by a small percentage. The

running time of the distance-2 search is 4.5 times greater than the local search since

there are 36 distance one and two neighbors from each processor and only 8 distance

one neighbors in an 8-cube. In general, the number of distance one and two neighbors

for an n-cube is (n(n + 1))/2. As n increases, the complexity of distance-2 CPE

on an n-cube increases like O(n 2) and the complexity of local CPE is increasing

O(log n).

In the first two examples, the global search is better than the other two, but

65

7

6

5

4

3

2

1

0
0

Figure 3.21:

Reduction of lambda vs. Sweeps: 8-cube

Local. Dist2 & Global search: 4tit

........ ::::::::::::::::::::::: ..

local
distance 2

.....................

...................................... global

4 ; 8 1; Ii ll4

Sweeps

Reduction of _, versus sweeps for three search distances on

4tit test case.

70

60

50

40

30

20

10

0
0

Figure 3.22:

Reduction of lambda vs. Sweeps: 8-cube

Local & Dist2 search: brack2

local
distance 2

t i

; 10 1'5 210 25 30

Sweeps

Reduction of A versus sweeps for two search distances on

bracket test case.

66

again, by a small percentage.The global searchis O(u?r). We did not compute the

mapping for the bracket test case, since the global search on the 3elt test case took

over 2 hours. The bracket test case has 13.27 times more vertices so it would take

approximately 352 cpu hours (14.6 days) on a Sun-4 workstation.

These graphs show that when mapping these three test cases to an 8-cube, the

mappings produced by CPE result in only slightly larger values of A than variants

that examine a larger subset of VT, at a significant time savings.

3.8 Comparison with Simulated Annealing

Here we compare CPE with the parallel SA heuristic mapping algorithm de-

veloped by Dahl [19]. In Tables 3.3, 3.4, and 3.5 we show the number of message

cycles that results from using the SA mapping on the 3elt, 4elt, and motor test

cases. Each table shows 200 experiments on one of the test cases, varying the be-

ginning temperature and the number of iterations. The ending temperatures used

to compute the tables were fixed at 0.1, 0.05, and 0.05, respectively. We did not

make an exhaustive search through the possible values of the three parameters but

ran enough examples to gain confidence that the values shown are representative of

the mappings possible when using SA.

In Table 3.6 we compare the best mapping that we observed using SA, the

best mapping we observed using parallel CPE and the best we obtained with RSB

and the serial version of CPE. We show the number of message cycles required to

schedule the one-to-many operation using the communication compiler and also the

time required for the heuristics to achieve this particular mapping. We see that SA

achieved a lower number of message cycles than the parallel CPE for one test case.

For the motor test case, the mapping from parallel CPE required about 11.7% more

message cycles; SA took 6.22 times longer to run.

One should note that the time for SA is for running exactly one test case. It

67

BeginningTemperature
iter 0.8 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

5O

100

150

2OO

250

300

350

400

450

5OO

55O

6OO

65O

7OO

75O

8OO

85O

9OO

95O

1000

25 20 25 21 20 20 21 21 22 19

16 16 17 17 17 19 18 18 18 19

16 16 14 15 16 16 17 17 15 15

13 14 14 14 14 15 15 14 15 15

14 13 14 14 14 14 13 15 14 15

13 12 12 12 12 14 12 14 12 14

14 12 12 12 11 14 12 13 14 13

13 ll 11 12 12 ll 13 13 12 13

11 ll 11 13 11 11 12 13 12 12

12 10 11 12 12 ll 11 12 12 13

11 ll 11 12 12 ll 11 ll 10 13

10 l0 12 10 10 12 12 11 12 11

10 11 10 10 13 11 11 l0 11 12

11 11 11 11 12 10 12 11 10 11

12 10 ll 9 ll 11 9 11 11 11

10 9 l0 l0 11 10 l0 ll 10 12

12 8 10 9 9 10 10 10 10 ll

9 10 l0 9 10 10 9 10 10 ll

ll 11 10 10 11 10 12 10 11 10

11 10 10 11 10 10 11 11 10 11

Table 3.3: Number of Message Cycles as a function of beginning tem-

perature and number of iterations using SA on the 3elt test

case.

68

Beginning Temperature

iter 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

200

400

6OO

8OO

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

3800

4OOO

41 42 42 41 42 43 43 45 43 45

32 34 33 33 37 36 33 38 35 37

29 32 31 31 31 30 32 34 34 34

27 25 29 28 28 26 30 28 29 28

24 25 26 26 25 25 28 27 26 26

23 27 25 25 27 26 27 24 24 24

23 23 23 23 25 23 25 24 24 25

22 23 21 25 23 23 24 25 23 27

22 21 23 22 22 24 22 23 25 24

21 23 20 22 21 22 22 22 22 23

21 20 20 19 22 20 21 22 22 22

20 20 21 20 21 21 25 22 20 22

20 19 19 19 20 20 19 20 20 22

18 20 19 20 21 20 21 20 23 21

18 21 18 20 18 20 20 21 20 21

18 21 18 17 20 18 20 19 21 20

19 20 18 19 19 18 19 19 20 19

18 19 18 19 20 18 20 20 19 19

17 18 18 18 20 18 19 19 21 18

21 18 18 18 19 17 18 19 22 20

Table 3.4: Number of Message Cycles as a function of beginning tem-

perature and number of iterations using SA on the 4elt test

case.

69

Beginning Temperature
iter 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

3800

400O

41 41 41 41 45 47 41 42 46 43

33 30 29 31 27 34 30 35 31 30

25 27 29 25 25 27 26 32 25 28

25 23 26 25 24 29 22 26 23 22

24 21 24 25 23 24 26 25 27 27

26 25 22 24 21 23 22 23 28 22

24 22 25 22 20 24 21 24 22 20

23 23 23 21 21 23 23 19 21 25

22 23 22 24 22 21 21 21 23 22

21 23 23 22 21 21 21 22 22 23

26 23 20 19 19 21 19 22 21 19

21 22 22 21 21 19 21 19 20 20

22 22 20 20 24 21 23 19 21 19

22 20 21 19 19 18 19 21 23 23

20 24 20 22 19 18 21 19 19 21

20 20 22 20 21 18 20 20 19 19

25 21 24 18 20 19 18 19 22 21

20 21 21 19 19 17 20 19 19 18

24 20 21 27 20 24 18 18 18 29

23 22 21 18 21 19 19 18 17 18

Table 3.5: Number of Message Cycles as a function of beginning tem-

perature and number of iterations using SA on the motor

test case.

test case

3elt

4elt

motor

Naive & RSB &

SA Parallel CPE Serial CPE

cycles time cycles time sweeps cycles sweeps

8 67 10 53 85 7 16

17 382 16 94 79 12 12

17 840 20 135 55 19 19

Table 3.6: Comparison of SA and CPE on 3 test cases: best mappings

and time in seconds for mapping.

7O

took many hours to compute the table to determine the optimal parameter values.

Ignoring the time to read the file from the front end, the running time for 1000

iterations for one set of temperature parameters of SA for the 3elt test case, the 4elt

test case, and the motor test case is 40 seconds, 113.75 seconds, and 225 seconds,

respectively. On an 8K CM-2, 1.16 hours, 13.27 hours, and 26.25 hours were required

to compute the values in the tables for the three test cases. The time for the serial

RSB and CPE are not included since it was run on a workstation and it would not

be a meaningful comparison. The running time for a grey code initial guess followed

by CPE is similar to the time for a naive initial guess followed by CPE, the grey

codes for each task take a fraction of a second to compute in parallel.

We also measured the elapsed time for 100 sweeps of the parallel CPE on these

three different test cases on 8K processors of the CM-2 hosted by a Sun-4. For test

cases 3elt, 4elt, and motor, the time was 62.32 seconds, 118.54 seconds and 247.70

seconds, respectively.

These comparisons show that parallel CPE and SA are capable of achiev-

ing similar quality mappings. However, one must find a good combination of the

three input parameters, otherwise SA yields mappings that are much worse than we

achieve using and initial mapping and CPE. Using an RSB initial mapping followed

by CPE does not require the user to choose initial parameters, the mappings are

comparable to the best the SA can achieve. An open question is whether CPE can

be followed by SA to some good effect.

3.9 Interconnection Comparison

Finally, we use CPE to study the communication capabilities of various in-

terconnection schemes for a set of hypothetical, but plausible, parallel computers.

We study three parallel computers: 256, 512, and 1024 processors and bandwidths

4096, 8192, and 16384 words/cycle, respectively. For each system, we analyze five

71

different interconnection schemes: hypercube, 2-D grid, 2-D torus, 3-D grid, and

3-D torus. For example, for the 256-processor system we have an 8-cube, a 16 x 16

grid of processors (2D Grid), a 16 x 16 torus (2D Torus), a 8 x 8 x 4 grid (3D

Grid) and a 8 x 8 × 4 torus (3D torus). Also, we normalize the bandwidths for

each system size so that there is a width-two connection between processors in the

hypercube and the interconnections in the other systems are proportionally wider.

For example, for the 256-processor system, each processor in the 8-cube has 8 neigh-

bors and each interconnection has width two. In the 16 x 16 torus, each processor

has half as many neighbors so the connections between them are twice as wide, or

four. In other words, for a fixed number of processors, we choose the width of each

wire such that the machine bandwidth is constant in all systems, independent of

the interconnection scheme.

In Figures 3.23 through 3.28 we show the many-to-many communication for

the bracket and viking test cases on five configurations of three different machine

sizes. We use an RSB initial mapping followed by distance-2 CPE rather than local

CPE because we want the best mapping possible in a reasonable amount of time.

(Recall that we showed that there was only a small difference between distance-

2 CPE and global CPE on a hypercube.) This reduces the bias present in CPE

against low-dimensional networks. The bias is due to the fact that CPE exchanges

task between neighbors and that low-dimensional networks have a smaller number

of neighbors than higher-dimensional networks, thus limiting the size of the subset

of possible exchanges. Each figure shows the reduction of 3. as a function of the

number of sweeps.

We cannot compare the different systems unless we know the ratio of 3. to the

number of message cycles. Define O as

O-
rnsg_eyeles "

One can think of 0 as measuring the percent wire utilization.

72

X

Figure 3.23:

120

100

80

6O

NormaLized Arch. Comparison: bracket

256 Processors

4O

2O

t

00 5 10 1'5 35

2D Grid

2D Tovas

3D Grid

3D Torus

Cube

2'0 15 _'o

S weeps

Comparison of communication capabilities for 5 intercon-

nection schemes using the bracket test case mapped to 256

processors.

X

Figure 3.24:

100

90

80

70

60

50

40

30

20

10

0
0

Normalized Arch. Comparison: bracket

._..._ 512 Processors

2D Crrid

2D Totus

3D Grid

3D T_'_
Cube

i I

Swe_s

35

Comparison of communication capabilities for 5 intercon-

nection schemes using the bracket test case mapped to 512

processors.

73

Figure 3.25:

10o

90

80

70

60

50

40

30

20

10

0

Normalized Arch. Comparison: bracket

1024 Processors

_
"_4--_.._.._-_- -" -__" "'_" "" -_" -_-_- 2D Grid

10 15 35

Sw¢_s

2D Torus
3D Grid
3D Torus
Cube

20 30

Comparison of communication capabilities for 5 intercon-

nection schemes using the bracket test ease mapped to 1024

processors.

D

A

Figure 3.26:

Normalized Arch. Comparison: viking

450
256 Processors

350

300

.250

.200

150

100

50

0
0 10 20 30 40 50 60

Swceps

Comparison of communication capabilities for 5 intercon-

nection schemes using the viking test case mapped to 256

processors.

74

u

A

Figure 3.27:

Normalized Arch. Comparison: viking
350

3OO

250

200 "'"" " ...

100

2D Grid
2D Torus
3D Grid50
3D Torus
Cube

0 1 30 40

Sweeps

512 Processors

5'O 6O

Comparison of communication capabilities for 5 intercon-

nection schemes using the viking test case mapped to 512

processors.

B

A

Figure 3.28:

Normalized Arch. Comparison: viking
4OO

1024 Processors
350

250 \

0 _ "'" , " , , , 2DGrid

2D Toms
...... 3D Grid

__:_ C_b,3DT°ms
i |

0 I0 20 30 40 50 60 70

Sw©cps

Comparison of communication capabilities for 5 intercon-

nection schemes using the viking test case mapped to 1024

processors.

75

Table 3.7:

_ Cycles _ 0]

s2 0.405 I
52

The value of 0 for the bracket test case mapped to varying

size hypercubes.

In Table 3.7 we show the value of 3., the number of message cycles, and the

value of ® for the bracket test case mapped to three different hypercube systems.

We used the communication compiler to compute the number of message cycles. We

see that O increases slightly as the number of processors increases. Also, for the

1024-processor hypercube, 3. is about twice as large for the 2-D torus as it is for the

hypercube. Therefore, for the 2-D torus to have a comparable communication time

for this problem its value of O should be twice the value of ® for the hypercube,

0.89 or 89% wire utilization.

The communication compiler only supports hypercubes and only handles task

graphs with eT < 106, so, at this time, we cannot determine the actual number

of message cycles for the viking test case or for the other systems. However, we

can make relative comparisons. In Figure 3.25 we see that on the 2-D torus and

3-D torus, A is 56.08 and 29.25 for the bracket test case. The ratio of these is

approximately two-to-one. Therefore, if the value of O for the 3-D torus is greater

than 0.52, then the many-to-many operation for this case on the 2-D torus will

always take longer than on the 3-D torus. The situation is similar for the viking

test case on 1024 processors. The value of 3, is 154.3 and 85.47 for the 2-D torus

and 3-D torus. Therefore, if the value of ® for the 3-D torus is greater than 0.55,

then the many-to-many operation for this case on the 2-D torus will always require

more time than the same operation on the 3-D torus.

76

Dally [21] analyzesk-ary n-cubes with fixed wire budgets for three applica-

tions: shortest path, Max-Flow, and graph partitioning. He concludes that low-

dimensional networks need less time to support the communication requirements of

his applications than high-dimensional networks.

At present we do not have sufficient data to determine whether or not Dally's

conclusions for has applications apply to the applications studied here. However,

we conjecture that that the communication requirements of these 3-D unstructured

grid problems are better satisfied by a parallel computer whose processors are in-

terconnected in a 3-D grid or 3-D torus compared to processors with a 2-D grid or

2-D torus interconnection. This is an area of future work.

3.10 Summary

We have introduced CPE, a parallel pairwise exchange heuristic for approx-

imately solving the mapping problem. We showed that reducing the number of

message cycles reduces the communication time. We also demonstrated that there

is good correlation between A and message cycles validating our choice of A1 as the

objective function. Additionally, we showed that for our test cases, and RSB initial

mapping followed by CPE achieves better mappings than random, naive, or gray

code initial mappings followed by CPE. RSB followed by CPE is compared with SA

for three test cases and shown to result in better mapping for two test cases but at

a substantial time savings.

Finally, we showed that one can use CPE to make a relative comparison of

the communication capabilities of various interconnection schemes for a set of hy-

pothetical, but plausible, parallel computers. However, a comprehensive study is

beyond the scope of this thesis.

CHAPTER 4

Massively Parallel Euler Solver for 2-D Unstructured Grids

In this chapter we develop a data parallel implementation of a computational fluid

dynamics code and discuss how CPE is used to map tasks to processors to reduce the

communication time. This flow code is the mesh-vertex upwind finite-volume scheme

for solving the Euler equations on 2-D triangular unstructured meshes developed by

Barth and Jespersen [5]. It has been implemented on the Cray-2 [5] and Cray-YMP.

The implementation described here performs computations identical to the code

developed for vector processing but has been restructured for efficient massively

parallel execution on the CM-2.

First, a description of the algorithm is given. We then direct the edges of the

discretizing mesh. The directed edge information is used to group data within tasks.

We show that this reduces the amount of communication by a factor of two and leads

to an optimal load balance. Also, we discuss the use of CPE in the flow code and

compare the performance of this application with and without CPE. We show that

using CPE to map tasks to processors reduces the communication time by a factor

of 2.23. The result is a load-balanced compute-bound parallel implementation of

the Euler code. Finally, the performance of this flow code running on 8K processors

of the Connection Machine CM-2 is compared with a similar code executing on one

processor of a Cray-YMP and a 64-node and 128-node Intel iPSC/860.

4.1 Mathematical Background and Algorithm Description

Here we give a brief discussion of the algorithm used in the flow solver. A

detailed description is provided by Barth and Jespersen [5] and Hammond and

Barth [34]. Consider the integral form of the Euler equations of gas dynamics in a

77

78

_ilili_iiiii_iiiiiiiiiiii:

_iii!iiiiiiiiiii!

k

ii_ii::,j'::]!iiiii!i$ J

i;iiiiiiiiiiiii!i_

O:i:!:[:!:i:[:!:

Mesh

Centroid Dual

Figure 4.1: A small triangular mesh and one control volume.

general region fl with boundary tgf_:

d

-_/fluda+ fa f(u,n) dl=O. (4.1)

In this equation u is the 4-vector of conserved variables: mass, momentum in each

dimension, and energy. The vector function f(u, n) is the flux of u through a surface

with normal orientation n. In developing a finite-volume scheme, the integral form

of the Euler equations is used for a tessellation T(fl) of fl comprised of disjoint

control volumes (also called cells) ci such that (2ci = ft. Here, _ is discretized with

triangles and T(fl) is formed by connecting the centroids of neighboring triangles.

For example, Figure 4.1 shows a portion of a triangular discretization. There are

six triangles, with solid line edges, meeting at i. The centroids of the triangles are

joined with dashed lines. The shaded region is the control volume ci corresponding

to mesh vertex i. Figure 4.2 shows the control volume tessellation of the region

79

Figure 4.2: Centroid dual constructed by connecting adjacent triangle

centroids.

surrounding the four element airfoil in test case 4elt, shown in Figure A.4.

Applying (4.1) to each control volume yields

-- u da + f(u,n) dl = 0.
dt , c,

Fundamental to the method is the definition of the integral cell average,

(_A)c,=f_ u da, A_ = f_ da.
i i

Using (4.3), (4.2) is rewritten

d /o_(_A)_, + f(u,n) dl = O.
ci

(4.2)

(4.3)

(4.4)

80

In the higher orderextensionof Godunov'sscheme[33]and the extensionconsidered

here, the integral cell averagesof u are the fundamental unknowns. It applies to

arbitrary shapedcells using piecewiselinear distributions of u in eachcell. The

linear distribution of any componentof u in cell c_ expanded about its centroid

(xc,, Yc,) is denoted by

u(z, y), = + (Vu)o,.Ix- xc,,y - (4.5)

By the use of centroidal coordinates, we restate (4.3) component-wise as

[u(x,y)ci de = _, [da = (gA)c,. (4.6)
dc i Jci

The solution unknowns are approximate pointwise values of the solution located at

the centroid of each control volume and they are associated with vertices of the

mesh.

Two distinct values of the solution can be obtained along a cell boundary,

because the piecewise polynomials are discontinuous from cell to cell. To resolve

this, the Euler flux is supplanted by a "numerical flux function", f(u +, u-, n), which

when given these two solution states u + and u- produces a single unique flux.

The numerical flux function is derived from approximate solutions to the Riemann

problem of gas dynamics. In the computations, an approximate solver developed

by Roe [57] is used. Approximating (4.4) by piecewise polynomials and a numerical

flux function yields

_ (_A)_, + f(u+,u-,n) d/= 0. (4.7)
ci

To complete the discretization of the flux integral, we note that cgci is composed of

straight line segments and perform a midpoint quadrature evaluation where (_, r/c)

denotes the midpoint of an edge e of control volume ci,

d

-(gA)¢, + _ f(u+((¢,r_),u-((_,r/¢),n)/¢ = 0. (4.8)
eEOci

81

An important task in this solution process is the calculation of the piece-

wise linear solution distribution in each control volume given solution unknowns

at vertices of the mesh. In the case of linear distributions, the linear functions

must be exact whenever the true solution varies linearly over the support of the

cell discretization (distance-one neighbors of the mesh). To accomplish this task, a

numerical approximations to the exact Green-Gauss formula is used,

VU d a = for un d l, (4.9)

for some path OF surrounding ci. For linear functions the gradient is constant in F

_ Vu da = (Vu)rAr.

Using pointwise values of the unknowns at vertices of the mesh, choose a path con-

necting distance-one neighbors of the mesh (see Figure 4.1). A trapezoidal quadra-

ture formula for the integration of the right-hand-side of (4.9), guarantees that linear

reconstruction is exact whenever the function varies linearly over the support of the

reconstruction. Using some algebraic manipulations (see Barth [4]), the trapezoidal

integration about the path 0Fi can be rewritten as

3 1

= m _-_(u_ + uo) n_l_, Va e {j,k,l,m,n,o}, (4.10)(Vu)c, Ar

where n_ is the normal of the control volume associated with the edge of the cen-

troidal dual. For example, in Figure 4.1, when a = j then n_ and l_ are the normal

and length of edge (j', k').

To summarize the previous discussion, the solution process consists of three

primary steps:

(i) Gradient Calculation in Each Control Volume: Given solution unknowns,

construct monotone piecewise linear polynomials for use in (4.10).

(ii) Flux Evaluation on Each Edge: For each edge in 7"(fl), perform a flux

quadrature consistent with linear functions, (4.8).

82

(iii) Evolution in Each Control Volume: Collect flux contributions in each

control volume and evolve in time using a 4-stage Runge-Kutta numerical integration

scheme.

4.2 Edge Direction and Data Storage

In this section, we show that to achieve efficient parMlel computation, it is

not sufficient to simply identify a commensurate number of tasks to be executed in

parallel by the processors, one must also determine how to group the data within

tasks to reduce the communication overhead. In particular, we direct the edges of

the unstructured mesh to determine how to group data associated with the vertices

(vertex data) and the data associated with the edges (edge data) together within

each task. In the massively parallel implementation of the flow solver described

above, we associate a task with each grid point (recall that each grid point is also

associated with the centroid of a control volume). Let task u be associated with

grid point i and task v be associated with grid point j. If i is adjacent to j in the

discretizing grid, then (u, v), (v, u) • ET.

We now have to decide which data is stored by each task. In a mesh-vertex

scheme, solution variables (mass, momentum, and energy) and the areas of the

control volumes are associated with each vertex in the mesh. The lengths and unit

normals of the edges of the control volumes are associated with each edge of the

mesh.

Assume that /iT ---_ biB. Clearly, every task contains the data for one vertex

and the data for several edges. In Figure 4.3 we illustrate the way that the data

is stored. The figure shows an array from 1 to VT of large rectangles representing

the data associated with the vertices and a short array below each array element

representing the data from a few edges. A large rectangle and the array of smaller

rectangles below it represents the data stored in one task.

83

1 Vr

B

Figure 4.3: Storage of edge data and vertex data.

The three steps of the algorithm above are either performed once per edge (i

and ii) or once per vertex (iii). Although the discussion below focuses on the flux

calculation, one should notice the similarity between (4.8) and (4.10). In each one,

some function of the edge and vertex data is evaluated once for each edge of the

control volume and the values for the edges surrounding each vertex are summed to

be stored as vertex data. Therefore, the same arguments that are made about the

distribution of data for the flux calculations apply to the distribution of data used

in the gradient calculations as well.

Each task performs flux computation at edges of the control volumes which

surround the associated grid point. Implementations on sequential and vector com-

puters typically perform this computation in a loop executed once for each edge of

the control volume. The ST flux calculations can be done in parallel, so each task

holding edge data can perform the corresponding flux calculation. Unnecessary

communication is required if the edge data and vertex data for a flux calculation

are each stored in different tasks. Recall that the CM-2 is a SIMD computer and

that all of the processors perform the same operation at the same time. Thus, as

the flux calculations are performed, if one task holding some edge data needs to

gather information from two tasks holding the necessary vertex data, and the two

tasks are mapped to different processors, then all tasks need to communicate. Also,

84

Figure 4.4:
mesh.

k

!iiiiiiiiili_iiiii_

o
n

Mesh

Centroid Dual

Control volume and directed edges on a small triangular

the resulting flux calculation contributes to the vertex data in two control volumes

so the task must then distribute its results back to the two tasks from which it

received data. This requires a total of 4eT communications. For example, consider

computing the flux through (k',j I) in Figure 4.1. Suppose that the vertex data

associated with vertices i and j are stored by tasks u and v respectively and that

the edge data associated with (k',j') is assigned to some task x. Any of the three

tasks could compute the flux through this edge of the control volume. Let task x

do the computations. Tasks u and v send their conserved values to x, the flux is

computed, and the results are then sent back to tasks u and v to be accumulated.

Now, suppose that we direct the edges of the mesh from Figure 4.1 as shown

in Figure 4.4. When some edge of the mesh (i,j) is directed from i to j, then the

task associated with grid point i stores the vertex data for i and the edge data

corresponding to the control volume edge associated with (i,j), in this case (j', k').

In Figure 4.4, the mesh has directed edges from vertex i to vertices m, k, and j.

85

Therefore, the task storing the vertex data for grid point i also stores the edge data

for (j',k'), (k',l'), and (m',n'}. During (ii) each task performs one flux computation

for each control volume edge associated with the outward directed edges of the grid

point. For each of the outward directed edges, every task does the following: it

receives vertex data from one other task, performs a flux computation, and then

sends results back to the same task. Every task has two thirds of the information

needed for the flux computation stored locally. For example, in Figure 4.4 there

is a directed edge from i to j. Therefore, the flux across (k_,j ') is computed by

the task storing the vertex data from grid point i. For the flux calculation, each

task executes a one-to-many communication to distribute its conserved values to

tasks storing neighboring vertices joined by inward directed edges of the mesh. It

performs the appropriate flux computations and then performs a many-to-many

communication primitive to the tasks storing vertices joined by outward directed

edges of the mesh. For example, the task storing data from grid point i will receive

data from the tasks storing vertices j, k, and m and send data (one-to-many) to the

tasks storing vertex data for n,o, and I. After the task storing data for vertex i

computes the flux through (j',k'}, (k',l'), and (m',n'} it sends the results (many-

to-many) to the tasks associated with grid points j, k, and m and receives results

from the tasks associated with grid points n,o, and I. Therefore, with the data

stored in this manner, each task performs 2 communications for each of its outward

directed edges, for a total of 2_. This is half the number of communications required

otherwise.

Using the edge direction to determine which task computes the flux through

each edge reduces the communication by half. But, edge direction can result in a

load imbalance if one vertex has many more outward pointing edges than the other

vertices. Recently, Chrobak and Eppstein [17] have given a linear time algorithm

for orienting the edges of any planar graph G such that 8+(G) = 3. Therefore, no

86

task needs to compute the flux across more than three edges of the control volume.

Directing the edges in this manner is an optimal load balance. 1

Now, we prove that using the directed edge information to group vertex and

edge data within tasks leads to an efficient parallel implementation. We show that

the serial code is O(e) and that with p tasks, our parallel algorithm is O(_). It is clear

that for step (iii) above, that the storage scheme requires no redundant calculations

since these computations are done once for each vertex of the mesh and we have

assigned one task to each vertex. However, steps (i) and (ii) must be performed once

for each edge of the control volume. It is obvious that a serial implementation will

perform one flux computation and one gradient computation for each edge of the

mesh. Recall that two vertices of the mesh share a control volume edge and that we

direct the edges of the mesh to determine which task performs the flux computation.

We claim that there are approximately three times as many edges as vertices in a

triangular discretization of 2-space. Therefore, if each task associated with a vertex

performs three flux calculations then the proposed data storage scheme completes

the O(e) work in O(_) time with p tasks.

We prove the following:

Proposition: For a 2-D mesh of triangular elements, _ = 3u--6--_l_Tb(a)(6(f)--3).

Proof: Let G be a planar graph. Recall that Euler's formula for planar graphs

(1.2) states that

u-e+¢=2.

For any planar graph, each edge is shared by 2 faces. Therefore, the sum of the

degree of all of its faces is equal to twice the number of edges:

y:_ 6(f) = 2_.

felt(G)

1For nonp|anar graphs, bounding the outdegree by a constant is not possible. It is possible

to bound the outdegree to be equal to one haft of the maximum degree of the graph. In genera],

tighter bounds are not known for nonplanar graphs.

87

We can subtract 3 from each term in the summation and 30 from the right to get

(5(f)- 3) = 2e - 3¢
f_y(a)

or

y_ (5(f) - 3) = 2¢ - 3¢, (4.11)
leTb(G)

since Vf C _(G) \ .Tb(G), 5(f)= 3. Rearranging (1.2) and substituting into (4.11)

yields

Solving for e yields

y_ (5(f)- 3)= -e + 3u-6. (4.12)

f_Tb(a)

¢=3u-6- _ (5(f)-3).
feyb(a)

Therefore, if the number of boundary edges is small relative to the number of

interior edges then, asymptotically, there are three times as many edges as vertices

in a triangular mesh. In the 4elt test case, u = 15606, ¢ = 45878, ¢ = 30269, and

Ef_b(a) 5(f) = 949.

4.3 Fast Communication

In the previous section, we showed that using the directed edge information

to group edge and vertex data to be stored together in a task results in 2¢ commu-

nications. In this section, we show that we can reduce the amount of time required

for these 2¢ communications by using CPE to map tasks to processors. The com-

munication compiler is used to schedule the communications on the wires.

During the flux and gradient calculations, the initial gathering of information

is accomplished using a one-to-many operation since the same data is sent to all

neighboring tasks corresponding to the inward directed edges of the mesh. After

88

Operation Naive Naive & CPE RSB & CPE No Comm.

one-to-many

gradient comp.

flux comp.

many-to-many

boundary comp.

4.055

22.454

23.951

9.706

5.494

2.210

13.745

19.490

5.064

4.583

1.738

12.685

18.864

4.242

4.739

5.574

16.049

3.178

total 65.885 45.092 43.223 24.801

Table 4.1: Time in seconds for 400 iterations of kernel in unstructured

Euler code.

the calculation, the distribution of results uses a many-to-many operation since

unique data is sent to each task corresponding to an outward directed edge.

In Table 4.1 we compare the performance of this code on the CM-2 for test

case 4elt using a naive mapping, a naive initial mapping followed by CPE, the RSB

initial mapping followed by CPE, and just the computation. The code is written in

*lisp and timings were done using a Sun4/490 front end running version 6.0 of the

CM operating system. Time is given in seconds for 400 iterations of each opera-

tion, corresponding to 100 iterations of the flow solver using a 4-stage Runge-Kutta

numerical integration scheme. In the trial using RSB, the quotient graph is embed-

ded using a naive embedding followed by CPE to improve the embedding. Next,

the grouping of vertices into partitions was relaxed, and CPE was used to improve

the mapping. During the mapping process, no special considerations were made

to process the subset of vertices that communicate during the computations and

communications for the boundary conditions. In the last case, the communication

calls are commented out in the code. The sum of the times taken by the individual

components is larger than if one simply runs all of the pieces together. We see that

RSB followed by CPE reduced the communication time 2.23 times compared to a

naive mapping. Also, the last column shows that the time spent computing is 24.801

seconds and the total time with the RSB initial mapping and CPE is 43.223 seconds.

89

This means that 18.422 seconds, or 42.6% of the time was spent communicating and

57.4% of the time was computing.

4.4 Timing and Results

We compare the performance of the unstructured flow solver on 8K processors

of a Connection Machine CM-2 with one processor of a Cray-YMP. Note that this

1 of each of the full machines. The code on the CM-2 is an implementation of theis §

vertex-based scheme of the mesh-vertex scheme with piecewise linear reconstruction

and 4-stage Runge-Kutta integration used for evolution in time. As in the timings

above, the code is written in *lisp and timings were done using a Sun4/490 front end

running version 6.0 of the CM operating system. The calculations in the comparison

are all done in 32-bit arithmetic since the CM-2 we used did not have 64-bit hardware

at the time the code was developed. The geometric calculations for edge lengths,

edge normals, control volume areas, etc., were all precomputed in 64-bit arithmetic

on the CM-2 and stored as 32-bit values. This was necessary to obtain accurate

gradients used in linear reconstruction and probably indicates the need for 64-bit

precision for this type of computation. This will be especially important for viscous

flow calculations where the control volume areas will be orders of magnitude smaller.

The 64-bit calculations on the CM-2 were computed in software and the initialization

was not timed as part of the benchmark on either machine.

The calculations performed on the Cray-YMP are identical to the ones per-

formed on the CM-2. It is written in Fortran and all computations are in 64-bit

arithmetic. Also, the clock period on the YMP is 6 ns. We used the flow tracing

package perftrace to analyze the Cray code to determine the floating point usage.

There are approximately 300 floating point operations per edge, per iteration of the

flow solver. The edges of the mesh were colored and the code is vectorized over

edges of the dual grid utilizing gather-scatter. The shortest vector has length 500.

90

Table 4.2:

Computer Processors Mflops Timein Seconds

CM-2 8192 136 43

CrayY-MP 1 150 39

InteliPSC/860 64 188 31

Mflops and Time in seconds for unstructured Euler code

on three systems.

The main part of the code consumes 97% of the time and sustains 150 Mflops.

As mentioned earlier, the test case used has 15606 vertices, 45878 edges, 30269

faces, 4 bodies, and 949 boundary edges. Note that since there are approximately

twice as many vertices as processors on the CM-2, two tasks are assigned to each

processor 2. The full grid for this test case is shown in Figure A.3 and a close up of

the airfoil is shown in A.4.

The flow was computed at a Mach number of 0.1 at 0 degrees angle of attack

relative to the mesh. On one processor of a dedicated YMP, 100 time steps of the

code took 39 seconds. On 8K processors of the CM-2, the same computation takes

43 seconds.

The same algorithm has been developed to run on the Intel iPSC/860 hyper-

cube by Venkatakrishnan, Simon, and Barth [80]. RSB was used to partition the

task graph and a naive embedding was used for the timing. They compared differ-

ent schemes for embedding the quotient graph into the hypercube. They found that

the difference in the amount of time for communication was negligible for several

different embedding schemes.

In Table 4.2, we show the performance of this code on the Cray, the Intel, and

the CM-2. We conclude that using CPE to map the tasks to processors has made

the performance of the unstructured Euler code on a data-parallel SIMD computer

2The code runs at a "VP-ratio" of 2

91

similar to the performanceachievedon one processorof a Cray Y-MP and a 64-

processor Intel iPSC/860.

92

CHAPTER 5

Sparse Matrix-Vector Products

In this chapter we study techniques for multiplying sparse matrices and vectors.

This is a kernel operation in the solution of large sparse linear systems of equations

by iterative techniques such as the Krylov subspace methods. Also, it is the second

application in which we show how CPE is used to reduce the communication time.

Given x E _'_ and sparse A E _,_x_, compute y E _"

y = Ax. (5.1)

We compare three methods for computing (5.1). Each method is described and a

simple example is given. Finally, we give times for each of the methods for several

test cases. The first method, scan-based, uses scan operations (scans) and each

virtual processor stores one nonzero element of the matrix. The second method,

column-wise, is based on storing the nonzero elements of a column of the matrix

in each virtual processor. The third method, row-wise, stores the nonzero elements

of a row of the matrix in each virtual processor. For the last two methods, we

associate a task with each column and row of the matrix, respectively. If aij is

nonzero, then (i,j) E T. We use CPE to map tasks to processors and show that the

communication time is reduced by approximately a factor of two for our test cases.

We demonstrate that, on the CM-2, row-wise sparse matrix-vector multiplication

mapped with CPE is an order-of-magnitude faster than scan-based operations for

our test cases.

Saltz et al. [62] compare a scan-based and a row-wise sparse matrix vector

multiplication scheme for matrices arising from several synthetic grids and several

banded matrices. The synthetic grid test cases are generated from a 5-point finite

difference stencil on a regular grid except that with probability 0.2, each edge of

93

PRECEDING PAGE BI.ANK Nor F_Lr,:_p _,_BE3..4=_.__,_,i1_.(_T_

94

the stencil was changed from joining a grid point and its neighbor to joining a

grid point and a randomly chosen point in the grid. The grid sizes they use are:

(64×64), (64×128), (128x128), (256x128), and (256x256). The second test cases

are square, banded matrices, with bandwidths of 4, 8, and 16, and between 4K and

64K rows. In the row-wise operation, one row of nonzero elements is assigned to

each virtual processor, however, they do not say how the rows are assigned to the

processors. The communication compiler is used for the communication in the row-

wise case. On a 16K CM-2, the row-wise sparse matrix vector multiplication scheme

is faster than the scan-based scheme in all but the smallest cases. When the number

of rows or columns in the matrix is less than the number of processors, the scan-

based operation is faster for their test cases. Here we use data from applications

rather than banded or synthesized matrices for our comparisons since the banded

and synthesized matrices are representative of the class of problems we study here.

Also, we use CPE to map the associated task graphs to the processors to reduce the

communication time.

5.1 Scan-based Sparse Matrix-Vector Multiplication

Iverson first introduced scan operations as part of APL [39]. Scans take as

input a binary operator G with identity i and an ordered set b =[bo, bl, ..., b,_-a].

We assume that each bi is assigned to a different processor. Exclusive scans return

the ordered set [i, bo,(bo G bl),(bo _ ba • b2), ..., (bo _3 bl @ ... @ b_-2)]. Inclusive

scans return [b0, (b0 • bl),(bo @ bl • b2), ..., (bo @ bl O"" • b_-l)]. Another form

of scan operation is the backward scan (right to left) which returns [(bo ® ba ®.-. G

bn-1),(bl (_"" (_bn-1), ..., (bn-2 _bn-1),bn-1].

Another variant of scans are segmented scans [52, 67] which enable one to

execute scans independently on contiguous subsets of the input, called segments.

Segmented scans take an additional argument, a set of segment flags that have the

95

b 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

segment T F F F F F F T F F F F F F F

add-scan

unseg. 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120
seg. 1 3 6 10 15 21 28 8 17 27 38 50 63 77 92

copy-scan
unseg. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
seg. 1 1 1 1 1 1 1 8 8 8 8 8 8 8 8

Figure 5.1: Example of inclusive add-scan and copy-scan operations,

unsegmented and segmented versions.

same number of elements as the input set b. The input flags have value T or F. If

the i th segment flag has value T, then bi is the beginning of a segment.

Figure 5.1 shows an example of inclusive add-scan and copy-scan operations

in both segmented and unsegmented mode applied to b. The source set b and the

segment are shown at the top. The segment flags indicate that b0 and b7 start new

segments.

Blelloch [11] shows how scan primitives are used in algorithm design and how

they can be implemented in hardware. He shows that a scan operations is no

more expensive than a reference to shared memory. Also, the complexity of many

algorithms developed for the EREW PRAM model of computation can be reduced

by O(log n) when implemented with scans.

To compute (5.1) using scans, the nonzero elements of A are stored in a linear

array a in row major order. Suppose that there are nz(A) nonzero elements in A.

Five additional nz(A)-element arrays are needed. The first, row, is an array of the

row numbers of the elements of A. The second array, col, contains the column

numbers of the corresponding elements of a. The third, seg, is a segment array

whose elements are T if the corresponding element in a is the first nonzero element

in a row of A. Thus, the nonzero elements of the rows of A are stored in segments.

96

The fourth and fifth arrays are temporary arrays, x_temp and y_temp.

A scan-based algorithm is currently used in the sparse matrix vector multipli-

cation on the Connection Machine CM-2 in version 2.2 of the Scientific Subroutine

Library [76]. It works as follows:

1. distribute elements of x,

2. parallel element-wise multiplication,

3. backwards segmented add_scan,

4. send results back to y.

Here we give an example of multiplying a sparse 5 x 5 matrix A by a vector

x. Fortran90 statements corresponding to each operation are also shown in []'s. Let

A __

(10506

01230

22302

30303

10005

1

2

and x = 3 (5.2)

4

k5/

The arrays x, a, row, col, and seg are below.

x={12345}

a= {1 5 6 1 2 3 2 2 3 2

row= {1 1 1 2 2 2 3 3 3 3

col= {1 3 5 2 3 4 1 2 3 5

seg= {T F F T F F T F F F

3 3 3 1 5}

44455}

13515}

T F F T F}

Each array is distributed one element per processor.

The first step in computing a scan-based sparse matrix-vector multiplication

is to distribute the elements of x to the elements of temp_x. Each virtual processor

storing a nonzero element from column i gets a copy of x [±]. Since x is the result of

97

prior computations, it is typically not stored in this distributed manner. For exam-

ple, in the case of solving large sparse linear systems of equations by the conjugate

gradient method [36], x is a search direction and y is used to scale an update of the

approximate solution at each iteration.

Executing [x_temp(:) = x(col(:))] results in

x_temp= {1 3 5 2 3 4 1 2 3 5 1 3 5 1 5}.

Next, a and x_temp are multiplied element-wise and the result is stored back in

x_temp [x_temp = x_temp * a].

We now have

x_temp= {1 15 30 2 6 12 2 4 9 10 3 9 15 1 25}.

Next, we perform an inclusive add-scan operation with the following inputs: y_temp

is the destination, x_temp is the source data, seg specifies the beginning of the rows,

and backward specifies the direction.

[call add_scan(y_temp, x_temp, seg, backward)],

y_temp= {46 45 30 20 18 12 25 23 19 10 27 24 15 26 25}.

Finally, the elements of y_temp at the end of the backward segments are are sent to

y [where (seg) y(row(:)) = y_temp(:)].

y= {46 20 25 27 26}

Randomized routing has also been considered. For an n-cube, suppose that

every node contains one message to send to a distinct node. Valiant and Brebner

[79] and Valiant [78] describe a distributed randomized algorithm that can route

every message to its destination without two messages passing down the same wire

at the same time in O(n) with very high probability for all such message routing

requests. The algorithm consists of two phases run consecutively. The first phase

sends each message to a randomly chosen node. For every message, every node has

the same probability of being chosen, and the choices are independent of each other.

The second phase then routes each message from the random intermediate location

98

to its final destination.

This approachis an option on the ConnectionMachine in the CMSSL library

function and is chosenby setting a the ±randomparameter to 1. At the end of this

chapter,weshowthat randomization reducesthe communicationtime comparedto

non-randomizedsparsematrix-vector multiplication, however,it is still muchslower

the column-wiseand row-wisemethods.

5.2 Column-wise Sparse Matrix-Vector Multiplication

One can also compute (5.1) by forming a linear combination of the columns.

Each processor stores some xj, yj, the nonzero elements of column j of A and an

array of row numbers corresponding to the elements of A. The column-wise from of

sparse matrix vector multiply is thus:

1. local multiply: in parallel, each processor multiplies its xj with each nonzero

element of the column.

2. send products: the result of (Aij * xj) is sent to the processor holding y_.

3. sum partial results: each processor holding some yi adds (A_j * xj), 1 < i < n,

from all the processor holding nonzero elements of row i.

For the example, we use the same A and x from (5.2). Suppose that we have

five processors and that the data associated with column j gets assigned to processor

j. The data stored in each processor is shown across a row in the table. Initially,

we have

99

proc.

1 {1

2 {1

3 {5

4 {3}

5 {6

Multiplying the

proc.

1 {1

2 {2

3 {15

4 {12}

5 {30

a row x

2 3 I} {I 2 3 5} 1

2} {2 3} 2

2 3 3} {I 2 3 4} 3

{2} 4

2 3 5} {1 3 4 5} 5

nonzero elements in each processor by the element of x yields:

y_temp

2 3 1}

4}

6 9 9}

10 15 25}

Finally, we send the partial results and sum to form y.

proc. y_temp y

1 {1 15 30} 46

2 {2 6 12} 20

3 {9 2 4 10} 25

4 {3 9 15} 27

5 {25 I} 26

5.3 Row-wise Sparse Matrix-Vector Multiplication

Finally, we consider computing (5.1) using inner products. Each processor

stores the following data: some x_, yi, the nonzero elements of the i th row of A,

and the column numbers corresponding to the nonzero elements of the i th row of A.

The elements of x are then sent to the appropriate processors and each processor

performs a local inner product to calculate y. The row-wise from of sparse matrix

vector multiply is:

100

1. get x: each processor gets the xi corresponding to the column numbers of the

row numbers of the nonzero elements it stores.

2. inner product: each processor performs an inner product of the x's it has

received with the nonzero elements of the row it holds.

For the example, we use the same A and z from (5.2). Suppose that we have

five processors and that the data associated with column i gets assigned to processor

i. Initially, we have

proc. a

1 {1 5 6}

2 {1 2 3}

3 {z 2 a 2}

4 {a 3 3}

5 {1 5}

After each processor gets the values

perform the inner product to get y:

col x

{1 3 5} 1

{2 3 4} 2

{1 2 3 5} 3

{1 3 5} 4

{1 5} 5

of x, they are stored in an array x_temp and

proc. a x_temp y

1 {1 5 6} {1 3 5} 46

2 {1 2 3} {2 3 4} 20

3 {2 2 3 2} {1 2 3 5} 25

4 {3 3 3} {1 3 5} 27

5 {1 5} {1 5} 26

5.4 Comparison of Three Methods

In this section we compare the performance of the three methods of multiplying

a sparse matrix and a vector on several test cases. The matrices used for the test

cases are the adjacency matrices of the task graphs for test case 3elt, 4elt, and

motor.

101

Table 5.1:

column-wise row-wise

Naive CPE Naive[CPEscans

router get 36.27
mult. time 0.27 - -

add_scan 5.66 - -

router send 5.03 - -

comp. 1.22 1.22 0.78 0.78

comm. 5.62 3.02 3.02 2.26

total time 47.48 6.84 4.23 4.24 3.03

Mflops 1.16 8.02 12.99 12.96 18.10

Comparison of 64-bit sparse matrix-vector multi-

plication schemes for 3elt task graph, time in seconds.

In Tables 5.1, 5.2, and 5.3 we show the performance of each of the sparse

matrix vector multiplication techniques executed 1000 times. Timing on the CM-2

is complicated because the time of an application depends on the rate at which the

CM-2 is fed instructions by the front-end computer. To try to reduce this effect,

each test is run three times and the best time is used in each entry. All test cases are

implemented in *lisp and run on an 8K CM-2 running version 6.0 of the operating

system. The time for all entries except the last row is measured in seconds.

The total time given is not the sum of the entries in the column above it but

the time taken to run the total algorithm. Compiler optimizations enable some

reductions in operation thus the total time is often less than the sum of the times

of the individual operations. We do not understand why the router communication

time for the 4elt test case was so much larger than the time for the communication

and computation time.

The heuristic mapping algorithm is used to assign the columns or rows of A

and elements of x and y to the processors to minimize the communication time in the

column-wise and row-wise algorithms, respectively. The communication compiler is

used to communicate the elements of x in the row-wise and the partial results in

102

router get
mult. time

add_scan

router send

comp.
comm.

scans

121.28

1.02

10.32

8.73

total time 140.35

Mflops 1.80

column-wise

Naive CPE

5.91 5.91

23.90 12.27

29.94 18.20

8.44 13.88

row-wise

Naive CPE

3.82 3.82

18.66 7.85

22.50 11.64

11.23 21.70

Table 5.2: Comparison of 64-bit sparse matrix-vector multi-

plication schemes for motor task graph, time in seconds.

router get
mult. time

add_scan

router send

comp.

comm.

scans

94.56

1.13

12.98

13.21

total time 114.58

Mflops 1.60

column-wise

Naive] CPE

2.46 2.46

12.64 6.76

15.06 8.45

12.18 21.71

row=wise

Naive I CPE

1.56 1.56

7.91 4.33

9.10 5.85

20.16 31.35

Table 5.3: Comparison of 64-bit sparse matrix-vector multi-

plication schemes for 4elt task graph, time in seconds.

103

the column-wise. From *lisp, we use the command cmi: :deliver-ll. Note that

the communication time in the row-wise scheme is less than the communication in

the column-wise scheme. In the row-wise scheme, only one value is sent to many

neighbors and the fanout optimization can be exploited.

The column labeled "router" is included for comparison with the other meth-

ods. It uses the same algorithm for multiplication as the inner product but the

router is used to communicate the elements of x. Each processor makes A(T) calls

to the *lisp instruction pref! !.

Scan based sparse matrix vector multiplication are appropriate when the num-

ber of rows/columns in the matrix is much less than the number of processors since

it utilizes more parallelism. However, note that the time required for the add_scan

alone is greater than the total time using outer and inner products in the 3elt and

4elf test cases. So, even if the time for all other operations was zero, the scan-based

matrix vector multiplication would still take longer than the outer and inner product

based algorithms.

There are several reasons why the row-wise algorithm is faster than the column-

wise algorithm. First, the communication is faster since the elements of x are each

sent to multiple destinations. This is the one-to-many communication primitive

and we discussed the communication optimization that can be used to make it

faster than the many-to-many communication primitive required by the column-

wise storage scheme. Also, the floating point units on the CM-2 can perform a

multiply and an add every cycle and the inner product operation takes advantage

of this capability. In the column-wise scheme, the multiplication of matrix elements

and vector elements occur at one time and the summation of products occur on

different processors at a later time.

Table 5.4 compares the time for 1000 sparse matrix-vector multiplications

using the CMSSL 2.2 routine sparse_matvecnnult called from CM Fortran and the

104

CMSSL CMSSL Row-wise

Test Case rand=0 rand=l & CPE

3elt 33.70 27.56 3.03

motor 134.43 94.50 11.64

4elt 94.72 76.06 5.85

Table 5.4: Comparison of time in seconds for 64-bit CMSSL sparse
matrix routines called from CM Fortran and the row-wise

scheme using CPE on three test cases.

times for a row-wise sparse matrix-vector multiplication mapped with CPE in *lisp.

Specifying rand=0 means that the nonzero elements of row one are stored in the first

segment, the nonzero elements of the second row are stored in the second segment,

etc. Specifying rand=l chooses the randomization scheme described above. All

computations are done in 64-bit arithmetic on an 8K CM-2 running version 6.0 of

the operating system. The table shows that on the CM-2, randomization reduces the

time for the scan-based sparse matrix-vector multiplication. However, sparse matrix-

vector multiplication using a row-wise method and CPE is an order-of-magnitude

faster than the scan-based method for the 4elf test case and slightly less than an

order-of-magnitude faster for the 3elt and motor test cases. We conjecture that the

row-wise form is less than an order-of-magnitude fast than the scan-based operation

for the 3elt and motor test cases because there are fewer rows in the matrices than

1-bit processors in the 8K CM-2.

CHAPTER 6

Conclusions

In this thesis we have investigated the mapping problem. We developed the CPE

heuristic, a highly-parallel iterative pairwise exchange algorithm in which each pro-

cessor may exchange the tasks mapped to it with a small subset of the other pro-

cessors. The objective function used with CPE is A1 and we demonstrated good

correlation between A1 and the communication time on the CM-2.

For very large, very irregular problems arising in 2-D flow around complex

multi-component airfoils and 3-D flow around aircraft, CPE outperformed methods

based on simulated annealing - it required far less time to do the mapping and the

results obtained are better. By this we mean that, for our test cases, an application

requires less execution time when using a mapping produced by CPE than when

using a mapping produced by SA. Compared with random and naive mappings, it

reduced the communication time twofold, even for realistic, large, highly irregular,

and stretched meshes.

We developed an efficient data parallel implementation of Barth and Jes-

persen's mesh-vertex upwind finite volume scheme for solving the Euler equations

on triangular unstructured meshes [5]. An optimal edge direction was used to group

vertex and edge data within a task to reduce the amount of communication by

50% in this application. CPE was used to map tasks to processors and it produced

a load-balanced compute-bound computation whose throughput was slightly less

than, but competitive with, a similar code on 1 processor of a Cray Y-MP and a 64

processor Intel iPSC computer.

We compared three methods of massively parallel sparse matrix-vector multi-

plication: scan-based, column-wise, and row-wise. We showed that mapping with

CPE reduced the communication time by a factor of two for the latter two methods.

105

106

Also, we demonstratedthat the row-wisemethod was the fastest of the three and

that it achievedapproximately an order of magnitudegreater throughput than the

scan-basedmethod for our test caseson the CM-2.

Finally, this thesisdemonstratesthat ajudicious assignmentof tasksto proces-

sorsenablesdata-parallel SIMD computersto efficiently solveproblemsthat arisein

the solution of discretizedPDEs, wherethe discretizing grid is arbitrary, but static.

6.1 Future Work

There are many extensions that can be made to the work presented here.

First of all, alternatives to the way that CPE exchanges messages can be studied.

In some respects, CPE is the simplest deterministic-iterative algorithm; neighboring

processors iteratively exchange pairs of tasks. One could consider exchanging tasks

between processors other than neighbors. Also, one could try exchanging groups of

tasks rather than one pair per exchange. Finally, one could allow temporary load

imbalances rather than strictly enforcing each processor to hold an equal number of

tasks. Other variations not mentioned here are certainly possible.

Secondly, the current implementation of CPE assumes that the vertex weights

in the task graph are equal and that the edge weights in the task graph are equal.

This assumption is reasonable for a SIMD computer but may not be appropriate for

a MIMD system. Additionally, CPE assumes that the computer is homogeneous.

CPE can be extended to operate on heterogeneous task and processor graphs.

Also, we have assumed that there are no precedence relations between the

tasks. We assume that all tasks repeatedly compute and communicate, using the

values of the previous communication in the current computation. One could con-

sider extending CPE to map task graphs with precedence.

There is additional research to be done on the initial mappings. The current

implementation of RSB assumes a homogeneous task graph. Currently, the entries

107

of x2 are sorted and the median value is chosen to balance the number of tasks in

each partition. If the task weights are different, one could start at each end of x2 and

sum the values of the corresponding task weights until the sum of the task weights

in each partition are roughly equal and all tasks are assigned to a partition.

Mapping tasks to processors and scheduling messages to wires is currently

done separately. One could determine whether they can be combined to produce a

mapping with fewer message cycles than if performed separately.

Finally, one can use the experience gained with mapping and scheduling to

study the communication capabilities of various interconnection schemes for a set

of hypothetical, but plausible, parallel computers. We started to do this in Chapter

3 but a comprehensive study is beyond the scope of this thesis. To pursue this one

needs to develop a communication compiler that schedules messages to wires on

more than just hypercubes.

108

BIBLIOGRAPHY

[1] F. Afrati, C. H. Papadimitriou, and G. Papadimitriou. The complexity of

cubical graphs. Information and Control, pages 53-60, 1985.

[2] R. K. Agarwal and J. L. Richardson. Development of an Euler code on a

Connection Machine. In H. D. Simon, editor, Proc. of the Conference on

Scientific Applications of the Connection Machine, NASA Ames Research

Center, Moffett Field, California, pages 27-63. World Scientific, September

12-14, 1988.

[3] F. Andr6, J.-L. Pazat, and T. Priol. Experiments with mapping algorithms on

a hypercube. In Proc. of the 4 th Conference on Hypercubes, Concurrent

Computers, and Applications, pages 39-46, March 1989.

[4] T. J. Barth. On unstructured grids and solvers. In Computational Fluid

Dynamics, Lecture Series 1990-03. Von Karman Instit., Belgium, March 1990.

[5] T. J. Barth and D. C. Jespersen. The design and application of upwind

schemes on unstructured meshes. In AIAA 1989, 27 th Aerospace Sciences

Meeting, January 1989. AIAA-89-0366.

[6] G. Bedrosian. private communication. 1986.

[7] M. J. Berger and S. H. Bokhari. A partitioning strategy for nonuniform

problems on multiprocessors. IEEE Trans. Comp., 36(5):570-580, May 1987.

[8] F. Berman and L. Snyder. On mapping parallel algorithms to parallel

architectures. J. Parallel and Dist. Comput., 4:439-458, 1987.

[9] H. Berryman, J. Saltz, and W. Gropp. Krylov methods preconditioned with

incompletely factored matrices on the CM-2. Technical Report TR-685,

109

PRECED=NG PAGE BLANK NOT FILMED

110

Department of Computer Science, Yale University, New Haven CT, March

1989.

[10] S. N. Bhatt and I. C. F. Ipsen. How to embed trees in hypercubes. Technical

Report YALEU/DCS/RR-443, Yale University, Yale University, New Haven

CT, December 1985.

[11] G. E. Blelloch. Scans as primitive parallel operations. IEEE Trans. Comp.,

38(11):1526-1538, November 1989.

[12] S. H. Bokhari. On the mapping problem. IEEE Trans. Comp., 30(3):207-214,

March 1981.

[13] S. H. Bokhari. A shortest tree algorithm for optimal assignments across space

and time in a distributed processor system. IEEE Trans. Soft. Eng.,

SE-7(6):583-589, Nov 1981.

[14] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications.

North-Holland, 1976.

[15] M. Bromley, S. Heller, T. McNerney, and G. L. Steele Jr. Fortran at ten

gigaflops: The Connection Machine convolution compiler. In Proceedings of

the ACM SIGPLAN 91 Conference on Programming Language Design and

Implementation, 1991.

[16] M. Y. Chan and F. Y. L. Chin. On embedding rectangular grids in

hypercubes. IEEE Trans. Comp., 37(10):1285-1288, October 1988.

[17] M. Chrobak and D. Eppstein. Planar orientations with low out-degree and

compaction of adjacency matrices. Theoretical Computer Science, pages

243-266, 1991.

111

[18] J. S. Clary, G. A. Howell, and Jr. S. L. Karman. Benchmark calculations with

an unstructured grid solver on a SIMD computer. In Proc. Supercomputing

'89, pages 32-41, Reno, NV, November 1983.

[19] E. D. DaM. Mapping and compiled communication on the Connection

Machine system. In D. W. Walker and Q. F. Stout, editors, Proceedings of the

Fifth Distributed Memory Computer Conference, Charleston, SC, April 1990.

IEEE Computer Society Press, Los Alamitos, CA.

[20] E.D. Dahl. private communication, 1990.

[21] W. J. Dally. A VLSI Architecture for Concurrent Data Structures. Kluwer

Academic Publishers, 1987.

[22] A. Edelman. Optimal matrix transposition and bit reversal on hypercubes:

All-to-all personalized communication. Thinking Machines Corporation, 1990.

[23] F. Ercal, J. Ramanujam, and P. Sadayappan. Task allocation onto a

hypercube by recursive mincut bipartitioning. In Proceedings of the 3rd

Hypercube Concurrent Computers and Applications Conference, Pasadena,

CA, January 1988.

[24] C. Farhat, N. Sobh, and K. C. Park. Dynamic finite element simulations on

the Connection Machine. In Horst D. Simon, editor, Proc. of the Conference

on Scientific Applications of the Connection Machine, NASA Ames Research

Center, Moffett Field, California, pages 217-233. World Scientific, September

12-14, 1988.

[25] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving

network partitions. Technical Report 82CRD130, General Electric Co.,

Corporate Research and Development Center, Schenectady, NY, 1982.

112

[26] M. Fiedler. Algebraic connectivity of graphs. Czech. Math. J., 23:298-305,

1973.

[27] M. Fiedler. A property of eigenvectors of non-negative symmetric matrices

and its application to graph theory. Czech. Math. J., 25:619-633, 1975.

[28] Z. Galil, S. Micali, and H. Gabow. Priority queues with variable priority and

an o(ev log v) algorithm for finding a maximal weighted matching in general

graphs. In Proc. 23 ra IEEE Syrup. on Foundations of Computer Science,

pages 255-261, 1982.

[29] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to

the Theory of NP-Completeness. Freeman, San Francisco, 1979.

[30] A. George. Nested dissection of a regular finite element mesh. SlAM J. Num.

Anal., 10:345-363, 1973.

[31] E. N. Gilbert. Gray codes and paths on the n-cube. The Bell System

Technical Journal, pages 815-826, May 1958.

[32] J. R. Gilbert and E. Zmijewski. A parallel graph partitioning algorithm for a

message-passing multiprocessor. Int. J. Parallel Programming, 16(6):427-449,

1987.

[33] S. K. Godunov. A finite difference method for the numerical computation of

discontinuous solutions of the equations of fluid dynamics. Matematicheskie

Sbornik, 47, 1959.

[34] S. W. Hammond and T. J. Barth. An efficient massively parallel Euler solver

for 2-D unstructured grids. AIAA, April 1992.

[35] N. Hartsfield and G. Ringel. Pearls in Graph Theory: a Comprehensive

Approach. Academic Press, 1990.

113

[36] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving

linear systems. J. Res. National Bureau of Standards, (49):409-436, 1952.

[37] D. Hillis. The Connection Machine. The MIT Press, Cambridge, MA, 1985.

Fourth Printing.

[38] C.-T. Ho and S. L. Johnsson. Embedding meshes in boolean cubes by graph

decomposition. J. Parallel and Dist. Comput., 8:325-339, 1990.

[39] K. E. Iverson. A Programming Language. Wiley, New York, 1962.

[40] D. C. Jespersen and C. Levit. Numerical simulation of flow past a tapered

cylinder. In AIAA 1991, 29 th Aerospace Sciences Meeting, January 1991.

AIAA-91-0751.

[41] S. L. Johnsson and C. T. Ho. Algorithms for matrix transposition on Boolean

N-Cube configured ensemble architectures. SIAM J. Matriz Anal. Appl.,

9:419-454, 1988.

[42] S. L. Johnsson and C. T. Ho. Optimum broadcasting and personalized

communication in hypercubes. IEEE Trans. Comp., 38:1249-1268, 1989.

[43] B. W. Kernighan and S. Lin. An effective heuristic procedure for partitioning

graphs. The Bell System Technical Journal, pages 291-308, February 1970.

[44] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by simulated

annealing. Science, 220(4598):671-680, May 1983.

[45] D. W. Krumme, K. N. Venkataraman, and G. Cybenko. Hypercube

embedding is NP-Complete. In M. Heath, editor, First Hypercube Conference,

pages 148-157. SIAM, Knoxville, TN, August 1985.

[46] Ford L. R., Jr. and D. R. Fulkerson. Flows in Networks. Princeton Univ.

Press, Princeton, N J, 1962.

114

[47] F. F. Lee. Partitioning of regular computation on multiprocessor systems. J.

Parallel and Dist. Comput., 9:312-317, 1990.

[48] S.-Y. Lee and J. K. Aggarwal. A mapping strategy for parallel processing.

IEEE Trans. Comp., C-36(4):433-442, April 1987.

[49] M. C. Levit. Grid communication on the Connection Machine: analysis,

performance, and improvements. In Horst D. Simon, editor, Proc. of the

Conference on Scientific Applications of the Connection Machine, NASA

Ames Research Center, Moffett Field, California, pages 316-332. World

Scientific, September 12-14, 1988.

[50] V. M. Lo. Heuristic algorithms for task assignment in distributed systems.

IEEE Trans. Comp., 37(11):1384-1397, November 1988.

[51] L. N. Long. A three-dimensional Navier-Stokes method for the Connection

Machine. In H. D. Simon, editor, Proc. of the Conference on Scientific

Applications of the Connection Machine, NASA Ames Research Center,

Moffett Field, California, pages 64-93. World Scientific, September 12-14,

1988.

[52] G. A. Mago. A network of computers to execute reduction languages. Int. J.

Comput. Inform. Sci., 1979.

[53] O. A. McBryan. Connection Machine application performance. In Horst D.

Simon, editor, Proc. of the Conference on Scientific Applications of the

Connection Machine, NASA Ames Research Center, Moffett Field,

California, pages 94-115. World Scientific, September 12-14, 1988.

[54] J. Myczkowski, M. Bromley, and D. McGowan. Extremely fast difference

techniques for the Connection Machine. In AIAA I991, 29 th Aerospace

Sciences Meeting, January 1991. AIAA-91-0436.

115

[55] A. Pothen, H. D. Simon, and K-P Liou. Partitioning sparse matrices with

eigenvectors of graphs. SIAM J. Matrix Anal. Appl., 11(3):430-452, July 1990.

[56] D. A. Reed, L. M. Adams, and M. L. Patrick. Stencils and problem

partitionings: Their influence on the performance of multiple processor

systems. IEEE Trans. Comp., 36(7):845-858, July 1987.

[57] P. L. Roe. Approximate Riemann solvers, parameter vectors, and difference

schemes. J. Comput. Phys., 43:357-372, 1981.

[58] Y. Saad and M. H. Schultz. Topological properties of hypercubes. Technical

Report YALEU/DCS/RR-389, Yale University, New Haven, CT, 1985.

[59] Y. Saad and M. H. Schultz. Data communication in hypercubes. J. Parallel

and Dist. Comput., 6:115-135, 1989.

[60] P. Sadayappan, F. Ercal, and J. Ramanujam. Cluster partitioning approaches

to mapping parallel programs onto a hypercube. Technical report,

Department of Computer and Information Science, Ohio State University,

Columbus, OH, 1988. Submitted to Parallel Computing.

[61] P. Sadayappan, F. Ercal, and J. Ramanujam. Parallel graph partitioning on a

hypercube. Technical Report OSU-CISRC-3/88-TR8, Department of

Computer and Information Science, Ohio State University, Columbus, OH,

1988.

[62] J. Saltz, S. Petiton, H. Berryman, and A. Rifkin. Performance effects of

irregular communication patterns on massively parallel multiprocessors.

Technical Report Report 91-12, ICASE, 1991.

[63] J. Savage and M. Wloka. Heuristics for parallel graph-partitioning. Technical

Report CS-89-41, Dept. of Computer Science, Brown University, Providence,

116

RI, January 1991.

[64] J. Savageand M. Wloka. Parallel graph-embeddingand the Mob heuristic.

TechnicalReport CS-91-07,Dept. of Computer Science,Brown University,

Providence,RI, February 1991.

[65] R. Schreiber.An assessmentof the ConnectionMachine. TechnicalReport

TRg0.40,RIACS, NASA AmesResearchCenter, Moffett Field, CA, June

1990.

[66] K. Schwan, W. Bo, N. Bauman, P. Sadayappan, and F. Ercal. Mapping

parallel applications to a hypercube. In M. Heath, editor, Hypercube

Multiprocessors 1987, pages 141-151, Knoxville, TN, Sept 1987. SIAM.

[67] J. T. Schwartz. Ultracomputers. A CM Trans. Programming Language Syst.,

2(4):484-521, October 1980.

[68] C.-C. Shen and W.-H. Tsai. A graph matching approach to optimal task

assignment in distributed computing systems using a minimax criterion.

IEEE Trans. Comp., 34(3):197-203, March 1985.

[69] M. K. Shephard and M. K. Georges. Automatic thre-dimensional mesh

generation by the finite octree technique. Int. J. Numer. Meth. Engng.,

32(4):709-749, 1991.

[70] H. D. Simon. Partitioning of unstructured problems for parallel processing.

Computing Systems in Engineering, 2(2/3):135-148, 1991.

[71] J. B. Sinclair. Efficient computation of optimal assignments for distributed

tasks. J. Parallel and Dist. Comput., 4(4):342-362, August 1987.

[72] J. S. Squire and S. M. Palais. Programming and design considerations for a

highly parallel computer. In AFIPS Cong. Proc., number 23, pages 395-400,

117

1963.

[73] H. S. Stone. Multiprocessorschedulingwith the aid of network flow

algorithms. IEEE Trans. Soft. Eng., SE-3(1):85-93, Jan 1977.

[74] R. C. Strawn. Wing tip vortex calculations with an unstructured

adaptive-grid Euler solver. In Proceedings of the 47 th Annual Forum of the

American Helicopter Society, Phoenix, AZ, May 1991.

[75] E.-G. Talbi and P. Bessi_re. A parallel genetic algorithm for the graph

partitioning problem. In Proc. of the International Conference on

Supercomputing, Cologne, June 1991.

[76] Thinking Machines Corporation. CMSSL Release Notes, June 1991. Version

2.2.

[77] C. Tong. The preconditioned conjugate gradient on the Connection Machine.

In Horst D. Simon, editor, Proc. of the Conference on Scientific Applications

of the Connection Machine, NASA Ames Research Center, Moffett Field,

California, pages 188-213. World Scientific, September 12-14, 1988.

[78] L. G. Valiant. A scheme for fast parallel communication. SIAM J.

Computing, 11(2):350-361, May 1982.

[79] L. G. Valiant and G. J. Brebner. Universal schemes for parallel

communication. In Proc. 13 th ACM Symposium of Theory of Computing,

pages 263-277, 1981.

[80] V. Venkatakrishnan, H. D. Simon, and T. J. Barth. A MIMD implementation

of a parallel Euler solver for unstructured grids. Technical Report

RNR-91-024, Applied Research Branch, NAS Systems Division, NASA Ames

Research Center, Moffett Field, CA, September 1991.

118

[81] R. D. Williams. Performanceof dynamic load balancingalgorithms for

unstructured meshcalculations. TechnicalReport C3P913,Concurrent

SupercomputingFacility, California Institute of Technology,Pasadena,CA,

June 1990.

[82] S.Yalamanchili and D. T. Lee. A mapping algorithm for multiprocessor

architectures. In Proceedings of the 26th Allerton Conference on

Communications, Control and Computing, Honeywell Systems Research

Center, Minneapolis, MN, September 1988.

APPENDIX A

TEST GRIDS

Figure A.I: Test case 3elt: Unstructured mesh about 3 component air-

foil with flaps down.

119

120

J

",.i/

J\

Figure A.2: Test case 3elt: Closeup of unstructured mesh about 3 com-

ponent airfoil with flaps down.

degree num. vertices

3

4

5

6

7

8

9

6

425

258

3791

232

6

2

Table A.I: Histogram of vertex degrees for 3elt.

121

Figure A.3: Test case 4elt: Mesh about 4 component airfoil with ex-

tended flaps.

122

Figure A.4: Test case 4elt: Closeup of mesh about 4 component airfoil

with extended flaps.

123

degree num. vertices

3

4

5

6

7

8

9

10

4

934

755

13189

699

20

4

1

Table A.2: Histogram of vertex degrees for 4elt.

124

Figure A.5: Test case bump: Unstructured mesh over a bump.

125

Figure A.6: Test case bump: Closeup of unstructured mesh over a bump.

126

degree num. vertices

10

399

498

8396

490

7

Table A.3: Histogram of vertex degrees for bump.

127

Figure A.7: Test case 4elt-2: Unstructured mesh about 4 component

airfoil with flaps down.

128

Figure A.8: Test case 4elt-2: Closeup of unstructured mesh about 4

component airfoil with flaps down.

129

degree num. vertices

3

4

5

6

7

8

9

10

12

35

952

1334

7230

1195

292

82

21

2

Table A.4: Histogram of vertex degrees for 4elt-2.

130

degree num. vertices

7

9

12

15

17

18

19

22

24

25

26

27

28

30

31

32

34

36

38

40

42

44

4

498

118

78O

1648

2

2374

1

2

59

12

2

101

105

1

412

107

210

29

40

5

7

Table A.5: Histogram of vertex degrees for Permanent Magnet Motor,

test case Motor.

131

Figure A.9: Test case bracket: Tetrahedral mesh of a bracket, view a.,

only surface elements shown.

132

Figure A.IO: Test case bracket: Tetrahedral mesh of a bracket, view b.,

only surface elements shown.

133

degree num. vertices

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

10

250

3831

10285

2696

3535

3396

3525

4321

3121

6217

3189

2413

2521

1982

5472

2060

2019

855

348

319

137

6O

41

14

7

2

2

1

1

Table A.6: Histogram of vertex degrees for bracket.

134

degree num. vertices degree num. vertices

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

3O

31

32

33

34

35

1 36

56 37

301 38

1598 39

4594 40

10083 41

9212 42

8274 43

6521 44

16523 45

4170 46

2616 47

1967 48

1363 49

1156 50

833 51

627 52

486 53

400 54

322 55

265 56

213 57

213 59

152 61

113 64

115 68

85 74

66 77

56 78

53 125

42

43

36

26

16

24

19

18

10

6

8

12

1

7

5

6

3

4

5

3

1

3

2

1

2

1

1

1

1

1

1

Table A.7: Histogram of vertex degrees for helicopter blade, test case

rotor.

135

Figure A.11: Test case viking: closeup of 3D unstructured tetrahedral

mesh about Lockheed S-3A Viking aircraft, only surface

elements shown.

136

degree num. vertices degree num. vertices

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

6 24

56 25

105 26

275 27

1388

3027

5856

5071

47379

7116

3821

38726

3789

2911

19943

1589

1288

12247

76O

206

272

28

29

3O

31

32

33

34

35

36

37

38

39

40

41

42

43

44

98

92

66

43

46

42

22

16

22

11

6

4

3

5

3

2

1

1

1

1

1

Table A.8: Histogram of vertex degrees for 3D unstructured tetrahe-

dral mesh about Lockheed S-3A Viking aircraft.

